10 citations to https://www.mathnet.ru/rus/tmf6396
-
Tran B.D., Musielak Z.E., “Fully Symmetric Relativistic Quantum Mechanics and Its Physical Implications”, Mathematics, 9:11 (2021), 1213
-
Prykarpatsky A.K., Bogolubov Jr. N. N., “On the Classical Maxwell–Lorentz Electrodynamics, the Electron Inertia Problem, and the Feynman Proper Time Paradigm”, Ukr. J. Phys., 61:3 (2016), 187–212
-
N. N. Bogolubov Jr., A. K. Prykarpatski, D. Blackmore, “Maxwell–Lorentz electrodinamics revisited via the Lagrangian formalism and Feynman proper time paradigm”, Mathematics, 3:2 (2015), 190–257
-
Prykarpatsky A.K., Bogolubov Nikolai N. Jr., “The Maxwell Electromagnetic Equations and the Lorentz Type Force Derivation-The Feynman Approach Legacy”, Internat J Theoret Phys, 51:1 (2012), 237–245
-
Bogolubov N.N., Jr., Prykarpatsky A.K., Taneri U., “The relativistic electrodynamics least action principles revisited: new charged point particle and hadronic string models analysis”, Internat. J. Theoret. Phys., 49:4 (2010), 798–820
-
Slawianowski J.J., “Geometric nonlinearities in field theory, condensed matter and analytical mechanics”, Condensed Matter Physics, 13:4 (2010), 43103
-
Prykarpatsky A.K., “Reminiscences of unforgettable times of my collaboration with Nikolai N. Bogolubov (Jr.) Foreword”, Condensed Matter Physics, 13:4 (2010), 40102
-
Bogolubov N.N. (Jr.), Prykarpatsky A.K., “The vacuum structure and special relativity revisited: A field theory no-geometry approach within the Lagrangian and Hamiltonian formalisms”, Physics of Particles and Nuclei, 41:6 (2010), 913–920
-
Bogolubov N.N. (Jr.), Prykarpatsky A.K., “The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization”, Found. Phys., 40:5 (2010), 469–493
-
Bogolubov N.N. (Jr.), Prykarpatsky A.K., “The Lagrangian and Hamiltonian analysis of some relativistic electrodynamics models and their quantization”, Condensed Matter Physics, 12:4 (2009), 603–616