24 citations to https://www.mathnet.ru/rus/tmf6369
-
V. Y. Novokshenov, “Distributions of poles to Painlevé transcendents via Padé approximations”, Constr. Approx., 39:1 (2014), 85–99
-
Fornberg B., Weideman J.A.C., “A Computational Exploration of the Second Painlevé Equation”, Found. Comput. Math., 14:5 (2014), 985–1016
-
Reeger J.A. Fornberg B., “Painlevé IV: a Numerical Study of the Fundamental Domain and Beyond”, Physica D, 280 (2014), 1–13
-
Reeger J.A., Fornberg B., “Painlevé IV with both parameters zero: a numerical study”, Stud. Appl. Math., 130:2 (2013), 108–133
-
В. Ю. Новокшенов, “Усеченные решения уравнения Пенлеве II”, ТМФ, 172:2 (2012), 296–307 ; V. Yu. Novokshenov, “Tronquée solutions of the Painlevé II equation”, Theoret. and Math. Phys., 172:2 (2012), 1136–1146
-
В. Ю. Новокшенов, “Специальные решения первого и второго уравнений Пенлеве и особенности многообразия данных монодромии”, Тр. ИММ УрО РАН, 18, № 2, 2012, 179–190 ; V. Yu. Novokshenov, “Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold”, Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 105–117
-
Alfimov G.L., “On analytic properties of periodic solutions for equation $\mathscr Hu_x-u+u^p=0$”, J. Phys. A, 45:39 (2012), 395205, 13 pp.
-
Van Gorder R.A., “A linearization approach for rational nonlinear models in mathematical physics”, Commun. Theor. Phys., 57:4 (2012), 530–540
-
Bertola M., “On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation”, Nonlinearity, 25:4 (2012)
-
А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122 ; A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131