38 citations to https://www.mathnet.ru/rus/tmf626
-
Balakhnev, MJ, “On a classification of integrable vectorial evolutionary equations”, Journal of Nonlinear Mathematical Physics, 15:2 (2008), 212
-
М. Ю. Балахнев, “Об одном классе интегрируемых эволюционных векторных уравнений”, ТМФ, 142:1 (2005), 13–20 ; M. Yu. Balakhnev, “A class of integrable evolutionary vector equations”, Theoret. and Math. Phys., 142:1 (2005), 8–14
-
Т. В. Скрыпник, “Квазиградуированные алгебры Ли, схема Костанта–Адлера и интегрируемые иерархии”, ТМФ, 142:2 (2005), 329–345 ; T. V. Skrypnik, “Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288
-
Balakhnev MJ, “The vector generalization of the Landau-Lifshitz equation: Backlund transformation and solutions”, Applied Mathematics Letters, 18:12 (2005), 1363–1372
-
Anatoly G. Meshkov, Maxim Ju. Balakhnev, “Integrable Anisotropic Evolution Equations on a Sphere”, SIGMA, 1 (2005), 027, 11 pp.
-
Skrypnyk, T, “New integrable Gaudin-type systems, classical r-matrices and quasigraded Lie algebras”, Physics Letters A, 334:5–6 (2005), 390
-
Ал. Б. Замолодчиков, “Трехточечная функция минимальной лиувиллевской гравитации”, ТМФ, 142:2 (2005), 218–234 ; Al. B. Zamolodchikov, “Three-point function in the minimal Liouville gravity”, Theoret. and Math. Phys., 142:2 (2005), 183–196
-
T. V. Skrypnyk, “Quasigraded lie algebras, kostant—adler scheme, and integrable hierarchies”, Theor Math Phys, 142:2 (2005), 275
-
Al. B. Zamolodchikov, “Three-point function in the minimal Liouville gravity”, Theor Math Phys, 142:2 (2005), 183
-
А. Г. Мешков, В. В. Соколов, “Классификация интегрируемых дивергентных $N$-компонентных эволюционных систем”, ТМФ, 139:2 (2004), 192–208 ; A. G. Meshkov, V. V. Sokolov, “Classification of Integrable Divergent $N$-Component Evolution Systems”, Theoret. and Math. Phys., 139:2 (2004), 609–622