24 citations to https://www.mathnet.ru/rus/tmf6056
-
Kostyantyn Zheltukhin, Natalya Zheltukhina, “On Construction of Darboux integrable discrete models”, Reports on Mathematical Physics, 92:3 (2023), 279
-
Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204
-
Д. В. Миллионщиков, С. В. Смирнов, “Характеристические алгебры и интегрируемые системы экспоненциального типа”, Уфимск. матем. журн., 13:2 (2021), 44–73 ; D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69
-
K. Zheltukhin, N. Zheltukhina, “On discretization of Darboux Integrable Systems admitting second-order integrals”, Уфимск. матем. журн., 13:2 (2021), 176–192 ; Ufa Math. J., 13:2 (2021), 170–186
-
И. Т. Хабибуллин, М. Н. Кузнецова, “О классификационном алгоритме интегрируемых двумеризованных цепочек на основе алгебр Ли–Райнхарта”, ТМФ, 203:1 (2020), 161–173 ; I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices
via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581
-
Zheltukhin K., Zheltukhina N., “On the Discretization of Darboux Integrable Systems”, J. Nonlinear Math. Phys., 27:4 (2020), 616–632
-
M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Уфимск. матем. журн., 11:3 (2019), 110–131 ; Ufa Math. J., 11:3 (2019), 109–131
-
Zheltukhin K. Zheltukhina N., “On the Discretization of Laine Equations”, J. Nonlinear Math. Phys., 25:1 (2018), 166–177
-
М. Н. Попцова, И. Т. Хабибуллин, “Алгебраические свойства квазилинейных двумеризованных цепочек, связанные с интегрируемостью”, Уфимск. матем. журн., 10:3 (2018), 89–109 ; M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105
-
Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.