10 citations to https://www.mathnet.ru/rus/tmf5665
  1. Alexander Iomin, “Quantum Walks in Hilbert Space of Lévy Matrices: Recurrences and Revivals”, Fractal Fract, 5:4 (2021), 171  crossref
  2. Alexander Iomin, “Hyperdiffusion of quantum waves in random photonic lattices”, Phys. Rev. E, 92:2 (2015)  crossref
  3. Valentin V. Sokolov, Oleg V. Zhirov, Giuliano Benenti, Giulio Casati, “Complexity of quantum states and reversibility of quantum motion”, Phys. Rev. E, 78:4 (2008)  crossref
  4. Valentin V. Sokolov, Giuliano Benenti, Giulio Casati, “Quantum dephasing and decay of classical correlation functions in chaotic systems”, Phys. Rev. E, 75:2 (2007)  crossref
  5. A. Iomin, “Loschmidt echo for a chaotic oscillator”, Phys. Rev. E, 70:2 (2004)  crossref
  6. P. G. Silvestrov, C. W. J. Beenakker, “Reply to “Comment on ‘Ehrenfest times for classically chaotic systems' ””, Phys. Rev. E, 68:3 (2003)  crossref
  7. A. Iomin, George M. Zaslavsky, “Quantum breaking time scaling in superdiffusive dynamics”, Phys. Rev. E, 63:4 (2001)  crossref
  8. B.V. Chirikov, F. Vivaldi, “An algorithmic view of pseudochaos”, Physica D: Nonlinear Phenomena, 129:3-4 (1999), 223  crossref
  9. Felix M. Izrailev, “Simple models of quantum chaos: Spectrum and eigenfunctions”, Physics Reports, 196:5-6 (1990), 299  crossref
  10. Г. П. Берман, А. М. Иомин, “О квазиклассическом приближении для нелинейного осциллятора, стохастического в классическом пределе”, ТМФ, 77:2 (1988), 277–284  mathnet  mathscinet; G. P. Berman, A. M. Iomin, “Semiclassical approximation for a nonlinear oscillator that is stochastic in the classical limit”, Theoret. and Math. Phys., 77:2 (1988), 1197–1202  crossref  isi