19 citations to https://www.mathnet.ru/rus/tmf5661
-
Sergiy LYASHKO, Valerii SAMOILENKO, Yuliia SAMOILENKO, Ihor GAPYAK, Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1, 2024, 1
-
Л. А. Калякин, “Возмущение простой диссипативной волны: от численных экспериментов к асимптотике”, Уфимск. матем. журн., 15:3 (2023), 55–70 ; L. A. Kalyakin, “Perturbation of a simple wave: from simulation to asymptotics”, Ufa Math. J., 15:3 (2023), 54–68
-
Georgy Omel'yanov, Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals, 2018
-
G. Omel'yanov, “Propagation and interaction of solitons for nonintegrable equations”, Russ. J. Math. Phys., 23:2 (2016), 225
-
Georgy A. Omel'yanov, “Soliton‐type asymptotics for non‐integrable equations: a survey”, Math Methods in App Sciences, 38:10 (2015), 2062
-
Samoilenko V.H. Samoilenko Yu.I., “Two-Phase Solitonlike Solutions of the Cauchy Problem For a Singularly Perturbed Korteweg-de-Vries Equation With Variable Coefficients”, Ukr. Math. J., 65:11 (2014), 1681–1697
-
Koichi Narahara, “Characterization of partially dissipated solitons in a traveling-wave field-effect transistor”, Communications in Nonlinear Science and Numerical Simulation, 19:3 (2014), 494
-
Valeriy Hrygorovych Samoylenko, Yuliya Ivanivna Samoylenko, “Asymptotic multiphase Σ-solutions to the singularly perturbed Korteweg–de Vries equation with variable coefficients”, J Math Sci, 200:3 (2014), 358
-
С. А. Кордюкова, “Иерархия Кортевега–де Фриза как асимптотический предел системы Буссинеска”, ТМФ, 154:2 (2008), 294–304 ; S. A. Kordyukova, “Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq
system”, Theoret. and Math. Phys., 154:2 (2008), 250–259
-
А. Векслер, Й. Зарми, “Пертурбативный анализ взаимодействия волн в нелинейных системах”, ТМФ, 144:2 (2005), 410–422 ; A. Veksler, Y. Zarmi, “Perturbative Analysis of Wave Interaction in Nonlinear Systems”, Theoret. and Math. Phys., 144:2 (2005), 1227–1237