19 citations to https://www.mathnet.ru/rus/tmf5202
  1. Sitai Li, Peter D. Miller, “On the Maxwell‐Bloch system in the sharp‐line limit without solitons”, Comm Pure Appl Math, 77:1 (2024), 457  crossref
  2. Asela Abeya, Gino Biondini, Gregor Kovačič, Barbara Prinari, “On Maxwell-Bloch Systems with Inhomogeneous Broadening and One-sided Nonzero Background”, Commun. Math. Phys., 405:8 (2024)  crossref
  3. Volodymyr Kotlyarov, Oleksandr Minakov, “Maxwell–Bloch equations without spectral broadening: the long-time asymptotics of an input pulse in a long two-level laser amplifier”, Nonlinearity, 36:9 (2023), 5007  crossref
  4. Mansur I. Ismailov, Cihan Sabaz, “Inverse Scattering Method via Riemann–Hilbert Problem for Nonlinear Klein–Gordon Equation Coupled with a Scalar Field”, J. Phys. Soc. Jpn., 92:10 (2023)  crossref
  5. M. S. Filipkovska, V. P. Kotlyarov, “Propagation of electric field generated by periodic pumping in a stable medium of two-level atoms of the Maxwell–Bloch model”, Journal of Mathematical Physics, 61:12 (2020)  crossref
  6. Gino Biondini, Ildar Gabitov, Gregor Kovačič, Sitai Li, “Inverse scattering transform for two-level systems with nonzero background”, Journal of Mathematical Physics, 60:7 (2019)  crossref
  7. Vladimir P. Kotlyarov, “A Matrix Baker–Akhiezer Function Associated with the Maxwell–Bloch Equations and their Finite-Gap Solutions”, SIGMA, 14 (2018), 082, 27 pp.  mathnet  crossref
  8. M. S. Filipkovska, V. P. Kotlyarov, E. A. Melamedova (Moskovchenko), “Maxwell–Bloch equations without spectral broadening: gauge equivalence, transformation operators and matrix Riemann–Hilbert problems”, Журн. матем. физ., анал., геом., 13:2 (2017), 119–153  mathnet  crossref
  9. V. P. Kotlyarov, E. A. Moskovchenko, “Matrix Riemann–Hilbert Problems and Maxwell–Bloch Equations without Spectral Broadening”, Журн. матем. физ., анал., геом., 10:3 (2014), 328–349  mathnet  crossref  mathscinet
  10. Vladimir Kotlyarov, “Complete linearization of a mixed problem to the Maxwell–Bloch equations by matrix Riemann–Hilbert problems”, J. Phys. A: Math. Theor., 46:28 (2013), 285206  crossref
1
2
Следующая