11 citations to https://www.mathnet.ru/rus/tmf5087
-
Lixiu Wang, Jihong Wang, Yangjie Jia, “Prolongation Structure of a Development Equation and Its Darboux Transformation Solution”, Mathematics, 13:6 (2025), 921
-
Anatolij K. Prykarpatski, Victor A. Bovdi, Myroslava I. Vovk, Petro Ya. Pukach, “On parametric generalizations of the Kardar-Parisi-Zhang equation and their integrability”, J. Phys.: Conf. Ser., 2667:1 (2023), 012043
-
Anatolij Prykarpatski, Petro Pukach, Myroslava Vovk, “Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability”, Entropy, 25:2 (2023), 308
-
Anatolij K. Prykarpatski, Petro Ya. Pukach, Myroslava I. Kopych, Trends in Mathematics, Geometric Methods in Physics XXXIX, 2023, 233
-
Anatolij K. Prykarpatski, “Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems”, Universe, 8:5 (2022), 288
-
Anatolij K. Prykarpatski, “On symmetry analysis of differential systems on functional manifolds”, Journal of Mathematical Analysis and Applications, 490:2 (2020), 124326
-
D. Blackmore, A. K. Prykarpatsky, E. Özçağ, K. Soltanov, “Integrability Analysis of a Two-Component Burgers-Type Hierarchy”, Ukr Math J, 67:2 (2015), 167
-
Ivanov, R, “Two-component integrable systems modelling shallow water waves: The constant vorticity case”, Wave Motion, 46:6 (2009), 389
-
Tsuchida, T, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I”, Journal of Physics A-Mathematical and General, 38:35 (2005), 7691
-
Н. Н. Боголюбов (мл.), А. К. Прикарпатский, “Квантовая алгебра Ли токов – универсальная алгебраическая структура симметрий вполне интегрируемых нелинейных динамических систем теоретической и математической
физики”, ТМФ, 75:1 (1988), 3–17
; N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, “Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics”, Theoret. and Math. Phys., 75:1 (1988), 329–339