290 citations to https://www.mathnet.ru/rus/tmf4872
  1. С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Детерминантные представления для формфакторов в квантовых интегрируемых моделях с $GL(3)$-инвариантной $R$-матрицей”, ТМФ, 181:3 (2014), 515–537  mathnet  crossref  mathscinet  adsnasa  elib; S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix”, Theoret. and Math. Phys., 181:3 (2014), 1566–1584  crossref  isi  elib
  2. J De Nardis, J-S Caux, “Analytical expression for a post-quench time evolution of the one-body density matrix of one-dimensional hard-core bosons”, J. Stat. Mech., 2014:12 (2014), P12012  crossref
  3. M. Wheeler, “Scalar Products in Generalized Models with SU(3)-Symmetry”, Commun. Math. Phys., 327:3 (2014), 737  crossref
  4. Jacopo De Nardis, Bram Wouters, Michael Brockmann, Jean-Sébastien Caux, “Solution for an interaction quench in the Lieb-Liniger Bose gas”, Phys. Rev. A, 89:3 (2014)  crossref
  5. M Brockmann, J De Nardis, B Wouters, J-S Caux, “Néel-XXZ state overlaps: odd particle numbers and Lieb–Liniger scaling limit”, J. Phys. A: Math. Theor., 47:34 (2014), 345003  crossref
  6. D Levy-Bencheton, V Terras, “Multi-point local height probabilities of the CSOS model within the algebraic Bethe ansatz framework”, J. Stat. Mech., 2014:4 (2014), P04014  crossref
  7. W. Galleas, J. Lamers, “Reflection algebra and functional equations”, Nuclear Physics B, 886 (2014), 1003  crossref
  8. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix”, Nuclear Phys. B, 881 (2014), 343–368  mathnet  crossref  isi  scopus
  9. R. van den Berg, G. P. Brandino, O. El Araby, R. M. Konik, V. Gritsev, J.-S. Caux, “Competing interactions in semiconductor quantum dots”, Phys. Rev. B, 90:15 (2014)  crossref
  10. S Faldella, G Niccoli, “SOV approach for integrable quantum models associated with general representations on spin-1/2 chains of the 8-vertex reflection algebra”, J. Phys. A: Math. Theor., 47:11 (2014), 115202  crossref
Предыдущая
1
14
15
16
17
18
19
20
29
Следующая