289 citations to https://www.mathnet.ru/rus/tmf4872
-
Yunfeng Jiang, Joren Brunekreef, “On the semi-classical limit of scalar products of the XXZ spin chain”, J. High Energ. Phys., 2017:3 (2017)
-
W. Galleas, “Continuous representations of scalar products of Bethe vectors”, Journal of Mathematical Physics, 58:8 (2017)
-
Karol K Kozlowski, “Form factors of bound states in the XXZ chain”, J. Phys. A: Math. Theor., 50:18 (2017), 184002
-
Miłosz Panfil, Symmetries and Integrability of Difference Equations, 2017, 391
-
N. M. Bogolyubov, I. Ermakov, A. Rybin, “Time evolution of the atomic inversion for the generalized Tavis–Cummings model–QIM approach”, J. Phys. A, 50:46 (2017), 464003–24
-
Laurens Vanderstraeten, Springer Theses, Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems, 2017, 5
-
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp.
-
Hutsalyuk A. Liashyk A. Pakuliak S.Z. Ragoucy E. Slavnov N.A., “Scalar products of Bethe vectors in models with ${\mathfrak{gl}}(2| 1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 1–28
-
Nepomechie R.I. Pimenta R.A., “Algebraic Bethe ansatz for the Temperley?Lieb spin-1 chain”, Nucl. Phys. B, 910 (2016), 885–909
-
Nepomechie R.I. Pimenta R.A., “Universal Bethe ansatz solution for the Temperley–Lieb spin chain”, Nucl. Phys. B, 910 (2016), 910–928