20 citations to https://www.mathnet.ru/rus/tmf4373
-
А. А. Расковалов, А. А. Гелаш, “Резонансное взаимодействие бризеров в системе Манакова”, ТМФ, 213:3 (2022), 418–436 ; A. A. Raskovalov, A. A. Gelash, “Resonanse interaction of breathers in the Manakov system”, Theoret. and Math. Phys., 213:3 (2022), 1669–1685
-
Mikhail Kovalyov, “Uncertainty principle for the nonlinear waves of the Korteweg–de Vries equation”, Chaos, Solitons & Fractals, 32:2 (2007), 431
-
M. Kovalyov, “On a class of solutions of KdV”, Journal of Differential Equations, 213:1 (2005), 1
-
А. Б. Борисов, “Асимптотическое поведение сингулярных солитонов и метод обратной задачи рассеяния для решения краевых задач”, ТМФ, 124:2 (2000), 279–291 ; A. B. Borisov, “Asymptotic behavior of singular solitons and the inverse scattering method for solving boundary value problems”, Theoret. and Math. Phys., 124:2 (2000), 1094–1104
-
С. Ю. Доброхотов, “Об эффектах интегрируемости укороченных цепочек Гюгонио–Маслова для траекторий мезомасштабных вихрей на мелкой воде”, ТМФ, 125:3 (2000), 491–518 ; S. Yu. Dobrokhotov, “Integrability of truncated Hugoniot–Maslov chains for trajectories of mesoscale vortices on shallow water”, Theoret. and Math. Phys., 125:3 (2000), 1724–1741
-
Dobrokhotov, SY, “Hugoniot-Maslov chains for solitary vortices of the shallow water equations, I. - Derivation of the chains for the case of variable Coriolis forces and reduction to the Hill equation”, Russian Journal of Mathematical Physics, 6:2 (1999), 137
-
M. Kovalyov, Mohammad Hosseini Ali Abadi, “An explicit formula for a class of solutions of the KdV equation”, Physics Letters A, 254:1-2 (1999), 47
-
С. Ю. Доброхотов, “Редукция к уравнению Хилла цепочки Гюгонио–Маслова для траекторий уединенных вихрей уравнений “мелкой воды””, ТМФ, 112:1 (1997), 47–66 ; S. Yu. Dobrokhotov, “Reduction of Hugoniot–Maslov chains for trajectories of solitary vortices of the “shallow water” equations to the Hill equation”, Theoret. and Math. Phys., 112:1 (1997), 827–843
-
A.B. Borisov, S.N. Ionov, “Vortices and vortex dipoles in 2D sine-Gordon model”, Physica D: Nonlinear Phenomena, 99:1 (1996), 18
-
R Beutler, A Stahlhofen, V B Matveev, “What do solitons, breathers and positons have in common?”, Phys. Scr., 50:1 (1994), 9