83 citations to https://www.mathnet.ru/rus/tmf2927
-
RÉMI LÉANDRE, “STOCHASTIC ADAMS THEOREM FOR A GENERAL COMPACT MANIFOLD”, Rev. Math. Phys., 13:09 (2001), 1095
-
Liu Da-Qing, Wu Ji-Min, Chen Ying, “Calculation of the Perturbative Expansion of Wilson Operators on the Lattice”, Chinese Phys. Lett., 18:11 (2001), 1442
-
D. I. Diakonov, V. Yu. Petrov, “Non-Abelian Stokes theorems in the Yang-Mills and gravity theories”, J. Exp. Theor. Phys., 92:6 (2001), 905
-
W. Kornelis, “Higher cumulants in the cluster expansion in QCD”, Nuclear Physics B - Proceedings Supplements, 96:1-3 (2001), 426
-
M. Faber, A. N. Ivanov, N. I. Troitskaya, M. Zach, “Path integral representation for Wilson loops and the non-Abelian Stokes theorem”, Phys. Rev. D, 62:2 (2000)
-
Urs Achim Wiedemann, “Transverse dynamics of hard partons in nuclear media and the QCD dipole”, Nuclear Physics B, 582:1-3 (2000), 409
-
YING CHEN, BING HE, JI-MIN WU, “NON-ABELIAN STOKES THEOREM AND COMPUTATION OF WILSON LOOP”, Mod. Phys. Lett. A, 15:17 (2000), 1127
-
Vladimir Shevchenko, Yuri Simonov, “Casimir Scaling as a Test of QCD Vacuum Models”, Phys. Rev. Lett., 85:9 (2000), 1811
-
M. Hirayama, M. Ueno, “Non-Abelian Stokes Theorem for Wilson Loops Associated with General Gauge Groups”, Progress of Theoretical Physics, 103:1 (2000), 151
-
Robert L. Karp, Freydoon Mansouri, Jung S. Rno, “Product integral formalism and non-Abelian Stokes theorem”, Journal of Mathematical Physics, 40:11 (1999), 6033