13 citations to https://www.mathnet.ru/rus/tmf289
  1. Pham Loi Vu, “THE BÄCKLUND TRANSFORMATION BETWEEN A COMMON SOLUTION OF BOTH LINEAR EQUATIONS IN THE LAX PAIR AND THE SOLUTION OF THE ASSOCIATED INITIAL-BOUNDARY VALUE PROBLEM FOR NONLINEAR EVOLUTION EQUATIONS ON THE HALF-LINE”, J Math Sci, 2024  crossref
  2. Munoz Grajales J.C., “Non-Homogeneous Boundary Value Problems For Some Kdv-Type Equations on a Finite Interval: a Numerical Approach”, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105669  crossref  mathscinet  isi  scopus
  3. Vu P., “Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations”, Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations, Monographs and Research Notes in Mathematics, Crc Press-Taylor & Francis Group, 2020, 1–388  isi
  4. Vu Ph.L., “Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations Preface”: Vu, PL, Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations, Monographs and Research Notes in Mathematics, Crc Press-Taylor & Francis Group, 2020, XV+  isi
  5. Pham Loi Vu, “The Description of Reflection Coefficients of the Scattering Problems For Finding Solutions of the Korteweg-de Vries Equations”, J. Nonlinear Math. Phys., 25:3 (2018), 399–432  crossref  mathscinet  zmath  isi  scopus
  6. Pham Loi Vu, “An Initial-Boundary Value Problem for the Korteweg-de Vries Equation with Dominant Surface Tension”, Acta Appl. Math., 129:1 (2014), 41–59  crossref  mathscinet  zmath  isi  scopus  scopus
  7. Ignatyev M.Yu., “On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis”, Math. Phys. Anal. Geom., 16:1 (2013), 19–47  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  8. Ignatyev M.Yu., “On Solution of the Integrable Initial Boundary Value Problem for KdV Equation on the Semi-Axis”, Math. Phys. Anal. Geom., 16:4 (2013), 381–392  crossref  mathscinet  zmath  isi  scopus  scopus
  9. Khanmamedov, AK, “Initial-boundary value problem for the Volterra lattice on a half-line with zero boundary condition”, Doklady Mathematics, 78:3 (2008), 848  crossref  mathscinet  zmath  isi  scopus  scopus
  10. И. Т. Хабибуллин, Е. В. Гудкова, “Краевые условия для многомерных интегрируемых уравнений”, Функц. анализ и его прил., 38:2 (2004), 71–83  mathnet  crossref  mathscinet  zmath; I. T. Habibullin, E. V. Gudkova, “Boundary Conditions for Multidimensional Integrable Equations”, Funct. Anal. Appl., 38:2 (2004), 138–148  crossref  isi
1
2
Следующая