49 citations to https://www.mathnet.ru/rus/tmf1332
-
A I Breev, A V Shapovalov, “The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration”, J. Phys.: Conf. Ser., 670 (2016), 012015
-
Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov, “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, SIGMA, 11 (2015), 066, 17 pp.
-
А. И. Бреев, “Поляризация вакуума скалярного поля на однородных пространствах c инвариантной метрикой”, ТМФ, 178:1 (2014), 69–87 ; A. I. Breev, “Scalar field vacuum polarization on homogeneous spaces with an invariant metric”, Theoret. and Math. Phys., 178:1 (2014), 59–75
-
Breev A.I., “Schrodinger Equation With Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces”, Russ. Phys. J., 57:8 (2014), 1050–1058
-
Breev A.I. Shapovalov A.V., “Yang-Mills Gauge Fields Conserving the Symmetry Algebra of the Dirac Equation in a Homogeneous Space”, XXII International Conference on Integrable Systems and Quantum Symmetries, Journal of Physics Conference Series, 563, ed. Burdik C. Navratil O. Posta S., IOP Publishing Ltd, 2014, 012004
-
Magazev A.A., “Algebra of Symmetry Operators and Integration of the Klein-Gordon Equation in An External Electromagnetic Field”, Russ. Phys. J., 57:6 (2014), 809–818
-
Robert J. Gray, “The Lie point symmetry generators admitted by systems of linear differential equations”, Proc. R. Soc. A., 470:2166 (2014), 20130779
-
А. С. Попов, И. В. Широков, “Звёздное произведение на коалгебре Ли и его применение для вычисления квантовых интегралов движения”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(30) (2013), 379–386
-
В. В. Михеев, “Высокотемпературное разложение матрицы плотности и его приложения”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1(30) (2013), 369–378
-
Breev A.I. Goncharovskii M.M. Shirokov I.V., “Klein-Gordon Equation with a Special Type of Nonlocal Nonlinearity in Commutative Homogeneous Spaces with Invariant Metric”, Russ. Phys. J., 56:7 (2013), 731–739