8 citations to https://www.mathnet.ru/rus/tmf1105
-
Kozlowski K.K., “On the Thermodynamic Limit of Form Factor Expansions of Dynamical Correlation Functions in the Massless Regime of the Xxz Spin 1/2 Chain”, J. Math. Phys., 59:9, SI (2018), 091408
-
Its A.R. Kozlowski K.K., “Large- x Analysis of an Operator-Valued Riemann?Hilbert Problem”, Int. Math. Res. Notices, 2016, no. 6, 1776–1806
-
Pavlov M.V. Sergyeyev A., “Oriented Associativity Equations and Symmetry Consistent Conjugate Curvilinear Coordinate Nets”, J. Geom. Phys., 85 (2014), 46–59
-
Kitanine N., Kozlowski K.K., Maillet J.M., Terras V., “Large-Distance Asymptotic Behaviour of Multi-Point Correlation Functions in Massless Quantum Models”, J. Stat. Mech.-Theory Exp., 2014, P05011
-
Gritsev V., Rostunov T., Demler E., “Exact methods in the analysis of the non-equilibrium dynamics of integrable models: application to the study of correlation functions for non-equilibrium 1D Bose gas”, J Stat Mech Theory Exp, 2010, P05012
-
Kojima, T, “Dynamical correlation functions for an impenetrable Bose gas with Neumann or Dirichlet boundary conditions”, Journal of Nonlinear Mathematical Physics, 6:1 (1999), 99
-
Kojima, T, “Completely integrable equation for the quantum correlation function of nonlinear Schrodinger equation”, Communications in Mathematical Physics, 189:3 (1997), 709
-
Н. А. Славнов, “Фредгольмовы детерминанты и $\tau$-функции”, ТМФ, 109:3 (1996), 357–371 ; N. A. Slavnov, “Fredholm determinants and $\tau$-functions”, Theoret. and Math. Phys., 109:3 (1996), 1523–1535