24 citations to https://www.mathnet.ru/rus/tmf1093
  1. V. V. Obukhov, S. V. Chervon, D. V. Kartashov, “Solutions of Maxwell equations for admissible electromagnetic fields, in spaces with simply transitive four-parameter groups of motions”, Int. J. Geom. Methods Mod. Phys., 21:05 (2024)  crossref
  2. V.V. Obukhov, “Classification of the non-null electrovacuum solution of Einstein-Maxwell equations with three-parameter abelian group of motions”, Annals of Physics, 2024, 169816  crossref
  3. V. V. Obukhov, “Classification of Petrov Homogeneous Spaces”, Symmetry, 16:10 (2024), 1385  crossref
  4. V. V. Obukhov, “Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in space-time with simply transitive four-parameter groups of motions”, Journal of Mathematical Physics, 64:9 (2023)  crossref
  5. Valeriy V. Obukhov, “Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(VIII)”, Symmetry, 15:3 (2023), 648  crossref
  6. Valeriy V. Obukhov, “Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX)”, Axioms, 12:2 (2023), 135  crossref
  7. Obukhov V.V., “Algebras of Integrals of Motion For the Hamilton-Jacobi and Klein-Gordon-Fock Equations in Spacetime With Four-Parameter Groups of Motions in the Presence of An External Electromagnetic Field”, J. Math. Phys., 63:2 (2022), 023505  crossref  isi
  8. Obukhov V.V., “<P>Algebra of the Symmetry Operators of the Klein-Gordon-Fock Equation For the Case When Groups of Motions G(3) Act Transitively on Null Subsurfaces of Spacetime</P>”, Symmetry-Basel, 14:2 (2022), 346  crossref  isi
  9. Valery V. Obukhov, “Maxwell's Equations in Homogeneous Spaces for Admissible Electromagnetic Fields”, Universe, 8:4 (2022), 245  crossref
  10. V. V. Obukhov, “Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions”, Symmetry, 14:12 (2022), 2595  crossref
1
2
3
Следующая