25 citations to https://www.mathnet.ru/rus/tm473
  1. Moghadasi S.R., “Controllability of Rolling Bodies With Regular Surfaces”, J. Korean. Math. Soc., 53:4 (2016), 725–735  crossref  mathscinet  zmath  isi  elib  scopus
  2. Ishikawa G., Machida Y., Takahashi M., “Singularities of tangent surfaces in Cartan?s split $G_2$-geometry”, Asian J. Math., 20:2 (2016), 353–382  crossref  mathscinet  zmath  isi  scopus
  3. Chitour Ya., Molina M.G., Kokkonen P., “Symmetries of the Rolling Model”, Math. Z., 281:3-4 (2015), 783–805  crossref  mathscinet  zmath  isi  elib  scopus
  4. Gogberashvili M., Sakhelashvili O., “Geometrical Applications of Split Octonions”, Adv. Math. Phys., 2015, 196708  crossref  mathscinet  zmath  isi  elib  scopus
  5. An D., Nurowski P., “Twistor Space for Rolling Bodies”, Commun. Math. Phys., 326:2 (2014), 393–414  crossref  mathscinet  zmath  isi  elib  scopus
  6. Molina M.G., Grong E., “Geometric Conditions for the Existence of a Rolling Without Twisting Or Slipping”, Commun. Pure Appl. Anal, 13:1 (2014), 435–452  crossref  mathscinet  zmath  isi  elib  scopus
  7. Baez J.C., Huerta J., “G(2) and the Rolling Ball”, Trans. Am. Math. Soc., 366:10 (2014), 5257–5293  crossref  mathscinet  zmath  isi  elib  scopus
  8. Yacine Chitour, Mauricio Godoy Molina, Petri Kokkonen, Springer INdAM Series, 5, Geometric Control Theory and Sub-Riemannian Geometry, 2014, 103  crossref
  9. de Leon M., “A historical review on nonholomic mechanics”, RACSAM Rev R Acad Cienc Exactas Fís Nat Ser A Mat, 106:1 (2012), 191–224  crossref  mathscinet  zmath  isi  scopus
  10. Grong E., “Controllability of Rolling Without Twisting Or Slipping in Higher Dimensions”, SIAM J. Control Optim., 50:4 (2012), 2462–2485  crossref  mathscinet  zmath  isi  elib  scopus
Предыдущая
1
2
3
Следующая