11 citations to https://www.mathnet.ru/rus/tm4081
  1. Toshiaki Fujimori, Muneto Nitta, Keisuke Ohashi, “Moduli spaces of instantons in flag manifold sigma models. Vortices in quiver gauge theories”, J. High Energ. Phys., 2024:2 (2024)  crossref  mathscinet
  2. Mikhail Alfimov, Andrey Kurakin, “On bosonic Thirring model in Minkowski signature”, Nuclear Physics B, 998 (2024), 116418  crossref  mathscinet
  3. Д. В. Быков, “Сигма-модели как модели Гросса–Невё. II”, ТМФ, 217:3 (2023), 499–514  mathnet  crossref  mathscinet  adsnasa; D. V. Bykov, “Sigma models as Gross–Neveu models. II”, Theoret. and Math. Phys., 217:3 (2023), 1842–1854  crossref
  4. D. V. Bykov, “Quantum flag manifold $\sigma$-models and Hermitian Ricci flow”, Comm. Math. Phys., 401 (2023), 1–32  mathnet  crossref  mathscinet
  5. J. Liniado, B. Vicedo, “Integrable degenerate $\mathcal {E}$-models from $4d$ Chern–Simons theory”, Ann. Henri Poincaré, 24:10 (2023), 3421  crossref  mathscinet
  6. S. Lacroix, “Four-dimensional Chern-Simons theory and integrable field theories”, J. Phys. A-Math. Theor., 55:8 (2022), 083001  crossref  mathscinet  isi  scopus
  7. I. Affleck, D. Bykov, K. Wamer, “Flag manifold SIGMA models: spin chains and integrable theories”, Phys. Rep.-Rev. Sec. Phys. Lett., 953 (2022), 1–93  crossref  mathscinet  isi
  8. Д. В. Быков, “Сигма-модели как модели Гросса–Невё”, ТМФ, 208:2 (2021), 165–179  mathnet  crossref  mathscinet  adsnasa; D. V. Bykov, “Sigma models as Gross–Neveu models”, Theoret. and Math. Phys., 208:2 (2021), 993–1003  crossref  isi  elib
  9. Sylvain Lacroix, Benoît Vicedo, “Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects”, SIGMA, 17 (2021), 058, 45 pp.  mathnet  crossref
  10. D. Bykov, D. Luest, “Deformed sigma-models, Ricci flow and Toda field theories”, Lett. Math. Phys., 111:6 (2021), 150  crossref  mathscinet  isi  scopus
1
2
Следующая