17 citations to https://www.mathnet.ru/rus/tm396
-
L. Oeding, “A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator”, Тр. ММО, 83, № 2, МЦНМО, М., 2022, 269–296
-
Nishiyama K., Ohta T., “Enhanced Adjoint Actions and Their Orbits For the General Linear Group”, Pac. J. Math., 298:1 (2019), 141–155
-
В. Л. Попов, “Число компонент нуль-конуса”, Современные проблемы математики, механики и математической физики, Сборник статей, Труды МИАН, 290, МАИК «Наука/Интерпериодика», М., 2015, 95–101 ; V. L. Popov, “Number of components of the nullcone”, Proc. Steklov Inst. Math., 290:1 (2015), 84–90
-
de Graaf W.A., “Orbit Closures of Linear Algebraic Groups”, Computer Algebra and Polynomials, Lecture Notes in Computer Science, 8942, ed. Gutierrez J. Schicho J. Weimann M., Springer-Verlag Berlin, 2015, 76–93
-
Derksen H. Kemper G., “Is One of the Two Orbits in the Closure of the Other?”: Derksen, H Kemper, G, Computational Invariant Theory, 2Nd Edition, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag Berlin, 2015, 309–322
-
Derksen H., Kemper G., “Stratification of the Nullcone”: Derksen, H Kemper, G, Computational Invariant Theory, 2Nd Edition, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag Berlin, 2015, 323–343
-
Zaiter M., “On Related Varieties to the Commuting Variety of a Semisimple Lie Algebra”, J. Algebra, 376 (2013), 10–24
-
Clarke M.C., “Computing nilpotent and unipotent canonical forms: a symmetric approach”, Math Proc Cambridge Philos Soc, 152:1 (2012), 35–53
-
de Graaf W.A., “Computing representatives of nilpotent orbits of theta-groups”, J Symbolic Comput, 46:4 (2011), 438–458
-
В. Л. Попов, “Две орбиты: когда одна лежит в замыкании другой?”, Многомерная алгебраическая геометрия, Сборник статей. Посвящается памяти члена-корреспондента РАН Василия Алексеевича Исковских, Труды МИАН, 264, МАИК «Наука/Интерпериодика», М., 2009, 152–164 ; V. L. Popov, “Two Orbits: When Is One in the Closure of the Other?”, Proc. Steklov Inst. Math., 264 (2009), 146–158