8 citations to https://www.mathnet.ru/rus/tm3709
-
В. И. Буслаев, “Необходимые и достаточные условия продолжимости функции до функции Шура”, Матем. сб., 211:12 (2020), 3–48 ; V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703
-
В. И. Буслаев, “О критерии Шура для формальных степенных рядов”, Матем. сб., 210:11 (2019), 58–75 ; V. I. Buslaev, “Schur's criterion for formal power series”, Sb. Math., 210:11 (2019), 1563–1580
-
В. И. Буслаев, “О непрерывных дробях с предельно периодическими коэффициентами”, Матем. сб., 209:2 (2018), 47–65 ; V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205
-
В. И. Буслаев, “Об особых точках мероморфных функций, задаваемых непрерывными дробями”, Матем. заметки, 103:4 (2018), 490–502 ; V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536
-
С. П. Суетин, “О новом подходе к задаче о распределении нулей полиномов Эрмита–Паде для системы Никишина”, Комплексный анализ, математическая физика и приложения, Сборник статей, Труды МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 259–275 ; S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261
-
С. П. Суетин, “О некотором аналоге теоремы Пойа для многозначных аналитических функций с конечным числом точек ветвления”, Матем. заметки, 101:5 (2017), 779–791 ; S. P. Suetin, “An Analog of Pólya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points”, Math. Notes, 101:5 (2017), 888–898
-
В. И. Буслаев, “О теореме Ван Флека для предельно периодических непрерывных дробей общего вида”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Труды МИАН, 298, МАИК «Наука/Интерпериодика», М., 2017, 75–100 ; V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93
-
В. И. Буслаев, “Емкость рационального прообраза компакта”, Матем. заметки, 100:6 (2016), 790–799 ; V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790