15 citations to https://www.mathnet.ru/rus/tm3566
-
С. Н. Михалев, “Метрическое описание изгибаемых октаэдров”, Матем. сб., 214:7 (2023), 60–90 ; S. N. Mikhalev, “A metric description of flexible octahedra”, Sb. Math., 214:7 (2023), 952–981
-
Ivan Izmestiev, “Deformation of quadrilaterals and addition on elliptic curves”, Mosc. Math. J., 23:2 (2023), 205–242
-
Yuehao Zhang, Enjie Zhang, Shuaihu Wang, Jie Xiao, Guangqiang Fang, Lecture Notes in Mechanical Engineering, Advances in Mechanism, Machine Science and Engineering in China, 2023, 1045
-
Gallet M. Grasegger G. Legersky J. Schicho J., “On the Existence of Paradoxical Motions of Generically Rigid Graphs on the Sphere”, SIAM Discret. Math., 35:1 (2021), 325–361
-
Izmestiev I., “Four-Bar Linkages, Elliptic Functions, and Flexible Polyhedra”, Comput. Aided Geom. Des., 79 (2020), UNSP 101870
-
Alexandrov V., “The Spectrum of the Laplacian in a Domain Bounded By a Flexible Polyhedron in R-D Does Not Always Remain Unaltered During the Flex”, J. Geom., 111:2 (2020), 32
-
В. М. Бухштабер, А. П. Веселов, “Топограф Конвея, $\mathrm{PGL}_2(\mathbb Z)$-динамика и двузначные группы”, УМН, 74:3(447) (2019), 17–62 ; V. M. Buchstaber, A. P. Veselov, “Conway topograph, $\mathrm{PGL}_2(\pmb{\mathbb Z})$-dynamics and two-valued groups”, Russian Math. Surveys, 74:3 (2019), 387–430
-
V. Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019), UNSP 38
-
I. Izmestiev, “Statics and kinematics of frameworks in euclidean and non-euclidean geometry”, Eighteen Essays in Non-Euclidean Geometry, Irma Lectures in Mathematics and Theoretical Physics, 29, eds. V. Alberge, A. Papadopoulos, European Mathematical Soc, 2019, 191–233
-
А. А. Гайфуллин, Л. С. Игнащенко, “Инвариант Дена и равносоставленность изгибаемых многогранников”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 143–160 ; Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145