13 citations to https://www.mathnet.ru/rus/tm3392
  1. JAGDEV SINGH, VED PRAKASH DUBEY, DEVENDRA KUMAR, SARVESH DUBEY, MOHAMMAD SAJID, “A NOVEL HYBRID APPROACH FOR LOCAL FRACTIONAL LANDAU–GINZBURG–HIGGS EQUATION DESCRIBING FRACTAL HEAT FLOW IN SUPERCONDUCTORS”, Fractals, 32:07n08 (2024)  crossref
  2. Armen Sergeev, “Ginzburg–Landau equations and their generalizations”, Indag. Math., New Ser., 34:2 (2023), 294–305  mathnet  crossref  isi
  3. D. Bazeia, M. A. Liao, M. A. Marques, “Generalized Maxwell–Higgs vortices in models with enhanced symmetry”, Eur. Phys. J. C, 82:4 (2022)  crossref
  4. Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476  crossref
  5. Deng Sh.-X., Ge X.-X., “Analytical Solution to Local Fractional Landau-Ginzburg-Higgs Equation on Fractal Media”, Therm. Sci., 25:6, B (2021), 4449–4455  crossref  isi
  6. А. Г. Сергеев, “Адиабатический предел в уравнениях Гинзбурга–Ландау и Зайберга–Виттена”, ТМФ, 203:1 (2020), 151–160  mathnet  crossref  mathscinet  adsnasa; A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Theoret. and Math. Phys., 203:1 (2020), 561–568  crossref  isi  elib
  7. Sergeev A.G., “Adiabatic Limit in Yang-Mills Equations in R-4”, J. Sib. Fed. Univ.-Math. Phys., 12:4 (2019), 449–454  mathnet  crossref  mathscinet  isi
  8. A. G. Sergeev, “Seiberg–Witten theory as a complex version of abelian Higgs model”, Sci. China-Math., 60:6, SI (2017), 1089–1100  crossref  mathscinet  zmath  isi
  9. A. G. Sergeev, “Adiabatic limit in abelian Higgs model with application to Seiberg–Witten equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 341–346  crossref  isi
  10. A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Geometric Methods in Physics, Trends in Mathematics, eds. P. Kielanowski, S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer Int Publishing Ag, 2016, 321–330  crossref  mathscinet  zmath  isi
1
2
Следующая