31 citations to https://www.mathnet.ru/rus/tm165
-
Birkar C., “On existence of log minimal models”, Compos Math, 146:4 (2010), 919–928
-
В. В. Шокуров, “Письма о бирациональном. VII Упорядоченный обрыв”, Многомерная алгебраическая геометрия, Сборник статей. Посвящается памяти члена-корреспондента РАН Василия Алексеевича Исковских, Труды МИАН, 264, МАИК «Наука/Интерпериодика», М., 2009, 184–208 ; V. V. Shokurov, “Letters of a Bi-rationalist. VII Ordered Termination”, Proc. Steklov Inst. Math., 264 (2009), 178–200
-
Birkar C., “Log minimal models according to Shokurov”, Algebra Number Theory, 3:8 (2009), 951–958
-
Ein L., Mustata M., “Jet Schemes and Singularities”, Proceedings of Symposia in Pure Mathematics: Algebraic Geometry Seattle 2005, Proceedings of Symposia in Pure Mathematics, 80, no. 1- 2, 2009, 505–546
-
Kovacs S.J., “Young person's guide to moduli of higher dimensional varieties”, Proceedings of Symposia in Pure Mathematics: Algebraic Geometry Seattle 2005, Proceedings of Symposia in Pure Mathematics, 80, no. 1- 2, 2009, 711–743
-
Kawakita M., “On a comparison of minimal log discrepancies in terms of motivic integration”, J. Reine Angew. Math., 620 (2008), 55–65
-
Alexeev V., Hacon Ch., Kawamata Yu., “Termination of (many) 4-dimensional log flips”, Invent. Math., 168:2 (2007), 433–448
-
Birkar C., “Ascending chain condition for log canonical thresholds and termination of log flips”, Duke Math. J., 136:1 (2007), 173–180
-
В. А. Исковских, В. В. Шокуров, “Бирациональные модели и перестройки”, УМН, 60:1(361) (2005), 29–98 ; V. A. Iskovskikh, V. V. Shokurov, “Birational models and flips”, Russian Math. Surveys, 60:1 (2005), 27–94
-
Fujino O., “On termination of 4-fold semi-stable log flips”, Publ. Res. Inst. Math. Sci., 41:2 (2005), 281–294