8 citations to https://www.mathnet.ru/rus/timm1112
  1. Boris Miller, Evgeny Rubinovich, Systems & Control: Foundations & Applications, Optimization of Dynamical Systems with Impulse Controls and Shocks, 2024, 257  crossref
  2. Н. И. Погодаев, М. В. Старицын, “Точные формулы приращения функционала и необходимые условия оптимальности, альтернативные принципу Понтрягина”, Матем. сб., 215:6 (2024), 77–110  mathnet  crossref  mathscinet  adsnasa; N. I. Pogodaev, M. V. Staritsyn, “Exact formulae for the increment of the objective functional and necessary optimality conditions, alternative to Pontryagin's maximum principle”, Sb. Math., 215:6 (2024), 790–822  crossref  isi
  3. Aram Arutyunov, Dmitry Karamzin, “A Survey on Regularity Conditions for State-Constrained Optimal Control Problems and the Non-degenerate Maximum Principle”, J Optim Theory Appl, 184:3 (2020), 697  crossref
  4. Aram Arutyunov, Dmitry Karamzin, Fernando Lobo Pereira, Lecture Notes in Control and Information Sciences, 477, Optimal Impulsive Control, 2019, 99  crossref
  5. A. Arutyunov, D. Karamzin, F. L. Pereira, “A remark on the continuity of the measure Lagrange multiplier in state constrained optimal control problems”, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 49–54  crossref  isi
  6. A. Dmitruk, I. Samylovskiy, “On the relation between two approaches to necessary optimality conditions in problems with state constraints”, J. Optim. Theory Appl., 173:2 (2017), 391–420  crossref  mathscinet  zmath  isi  scopus
  7. Dmitry Karamzin, Valeriano de Oliveira, Fernando Pereira, Geraldo Silva, “Minimax optimal control problem with state constraints”, European Journal of Control, 32 (2016), 24  crossref
  8. A. V. Arutyunov, D. Yu. Karamzin, “On some continuity properties of the measure Lagrange multiplier from the maximum principle for state constrained problems”, SIAM J. Control Optim., 53:4 (2015), 2514–2540  crossref  mathscinet  zmath  isi  scopus