10 citations to https://www.mathnet.ru/rus/tams3
  1. Dimitrios Chatzakos, Gergely Harcos, Ikuya Kaneko, “The Prime Geodesic Theorem in Arithmetic Progressions”, International Mathematics Research Notices, 2024  crossref
  2. Lindsay Dever, Djordje Milićević, “Ambient Prime Geodesic Theorems on Hyperbolic 3-Manifolds”, International Mathematics Research Notices, 2023:1 (2023), 588  crossref
  3. Antal Balog, András Biró, Giacomo Cherubini, Niko Laaksonen, “Bykovskii-Type Theorem for the Picard Manifold”, International Mathematics Research Notices, 2022:3 (2022), 1893  crossref
  4. Olga Balkanova, Dmitry Frolenkov, “The second moment of symmetric square $L$-functions over Gaussian integers”, Proc. R. Soc. Edinb., Sect. A, Math., 152:1 (2022), 54–80  mathnet  crossref  isi  scopus
  5. Giacomo Cherubini, Han Wu, Gergely Zábrádi, “On Kuznetsov–Bykovskii's formula of counting prime geodesics”, Math. Z., 300:1 (2022), 881  crossref
  6. Dimitrios Chatzakos, Giacomo Cherubini, Niko Laaksonen, “Second moment of the Prime Geodesic Theorem for $\mathrm {PSL}(2, \mathbb {Z}[i])$”, Math. Z., 300:1 (2022), 791  crossref
  7. Muharem Avdispahić, Zenan Šabanac, “Gallagherian Prime Geodesic Theorem in Higher Dimensions”, Bull. Malays. Math. Sci. Soc., 43:4 (2020), 3019  crossref
  8. Ikuya Kaneko, “The second moment for counting prime geodesics”, Proc. Japan Acad. Ser. A Math. Sci., 96:1 (2020)  crossref
  9. Olga Balkanova, Dmitry Frolenkov, “Prime geodesic theorem for the Picard manifold”, Adv. Math., 375 (2020), 107377–42  mathnet  crossref  isi  scopus
  10. M. Avdispahić, “A Prime Geodesic Theorem of Gallagher Type for Riemann Surfaces”, Anal Math, 46:1 (2020), 25  crossref