11 citations to https://www.mathnet.ru/rus/smj483
  1. Dimitrov E. Wu X., “Kmt Coupling For Random Walk Bridges”, Probab. Theory Relat. Field, 179:3-4 (2021), 649–732  crossref  mathscinet  isi  scopus
  2. Bhattacharjee Ch., Goldstein L., “on Strong Embeddings By Stein'S Method”, Electron. J. Probab., 21 (2016), 15  crossref  mathscinet  zmath  isi  scopus
  3. А. Ю. Зайцев, “Точность сильной гауссовской аппроксимации для сумм независимых случайных векторов”, УМН, 68:4(412) (2013), 129–172  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761  crossref  isi  elib
  4. Zaitsev A.Y., “Estimates of the rate of approximation in the CLT for L-1-norm of density estimators”, High Dimensional Probability III, Progress in Probability, 55, 2003, 255–292  mathscinet  zmath  isi
  5. Andrei Yu. Zaitsev, High Dimensional Probability III, 2003, 255  crossref
  6. Grama I., Nussbaum M., “A functional Hungarian construction for sums of independent random variables”, Annales de l Institut Henri Poincare–Probabilites et Statistiques, 38:6 (2002), 923–957  crossref  mathscinet  zmath  adsnasa  isi  scopus
  7. Zaitsev A.Y., “Estimates of the rate of approximation in a de–Poissonization lemma”, Annales de l Institut Henri Poincare–Probabilites et Statistiques, 38:6 (2002), 1071–1086  crossref  mathscinet  zmath  adsnasa  isi  scopus
  8. A. Yu. Zaitsev, “Multidimensional Version of a Result of Sakhanenko in the Invariance Principle for Vectors with Finite Exponential Moments. III”, Теория вероятн. и ее примен., 46:4 (2001), 744–769  mathnet  crossref  isi; A. Yu. Zaitsev, “Multidimensional Version of a Result of Sakhanenko in the Invariance Principle for Vectors with Finite Exponential Moments. III”, Theory Probab. Appl., 46:4 (2002), 676–698  mathnet  crossref
  9. A. Yu. Zaitsev, “Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. II”, Теория вероятн. и ее примен., 46:3 (2001), 535–561  mathnet  crossref  isi; A. Yu. Zaitsev, “Multidimensional Version of a Result of Sakhanenko in the Invariance Principle for Vectors with Finite Exponential Moments. II”, Theory Probab. Appl., 46:3 (2002), 490–514  mathnet  crossref
  10. F. Götze, A. Yu. Zaitsev, Asymptotic Methods in Probability and Statistics with Applications, 2001, 101  crossref
1
2
Следующая