30 citations to https://www.mathnet.ru/rus/smj2999
-
Vladimir G. Romanov, Michael V. Klibanov, “Can a single scalar second order PDE govern well the propagation of the electric wave field in a heterogeneous 3D medium?”, Journal of Inverse and Ill-posed Problems, 2022
-
Roman G. Novikov, Springer Proceedings in Mathematics & Statistics, 385, Mathematical Analysis, its Applications and Computation, 2022, 75
-
V. G. Romanov, T. V. Bugueva, “Inverse Problem for a Nonlinear Wave Equation”, J. Appl. Ind. Math., 16:2 (2022), 333
-
T. K. Yuldashev, O. Sh. Kilichev, “Nonlinear Inverse Problem for a Sixth Order Differential Equation with Two Redefinition Functions”, Lobachevskii J Math, 43:3 (2022), 804
-
V. G. Romanov, T. V. Bugueva, “The Problem of Determining the Coefficient of the Nonlinear Term in a Quasilinear Wave Equation”, J. Appl. Ind. Math., 16:3 (2022), 550
-
R G Novikov, V N Sivkin, “Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements”, Inverse Problems, 38:2 (2022), 025012
-
M. Yu. Kokurin, “On the uniqueness of the solution of the inverse coefficient problem for the Helmholtz equation in a phaseless spatially nonoverdetermined statement”, Differ. Equ., 57:9 (2021), 1136–1141
-
R. G. Novikov, V. N. Sivkin, “Phaseless inverse scattering with background information”, Inverse Probl., 37:5 (2021), 055011
-
V. G. Romanov, “Expansions of solutions of electrodynamic equations in a vicinity of characteristic surfaces”, Eurasian J. Math. Comput. Appl., 9:3 (2021), 68–81
-
В. Г. Романов, “Бесфазовая задача об определении анизотропной проводимости в уравнениях электродинамики”, Докл. РАН. Матем., информ., проц. упр., 501 (2021), 79–83 ; V. G. Romanov, “Phaseless problem of determination of anisotropic conductivity in electrodynamic equations”, Dokl. Math., 104:3 (2021), 385–389