7 citations to https://www.mathnet.ru/rus/smj2621
  1. A. A. Vasil'eva, “Diameters of Sobolev weight classes with a “small” set of singularities for weights”, Russ. J. Math. Phys., 26:4 (2019), 517–543  crossref  mathscinet  zmath  isi  scopus
  2. A. A. Vasil'eva, “Entropy numbers of embeddings of function spaces on sets with tree-like structure: some generalized limiting cases”, Russ. J. Math. Phys., 25:2 (2018), 248–270  crossref  mathscinet  zmath  isi  scopus
  3. А. А. Васильева, “Энтропийные числа операторов вложения функциональных пространств на множествах с древоподобной структурой”, Изв. РАН. Сер. матем., 81:6 (2017), 38–85  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. A. Vasil'eva, “Entropy numbers of embedding operators of function spaces on sets with tree-like structure”, Izv. Math., 81:6 (2017), 1095–1142  crossref  isi
  4. A. A. Vasil'eva, “Estimates for the entropy numbers of embedding operators of function spaces on sets with tree-like structure: some limiting cases”, J. Complex., 36 (2016), 74–105  crossref  mathscinet  zmath  isi  scopus
  5. A. A. Vasil'eva, “Embedding theorems for a weighted sobolev class in the space $L_{q,v}$ with weights having a singularity at a point: case $v\notin L_q^1$”, Russ. J. Math. Phys., 23:3 (2016), 392–424  crossref  mathscinet  zmath  isi  scopus
  6. A. A. Vasil'eva, “Estimates for norms of two-weighted summation operators on a tree under some restrictions on weights”, Math. Nachr., 288:10 (2015), 1179–1202  crossref  mathscinet  zmath  isi  scopus
  7. A. A. Vasil'eva, “Widths of weighted Sobolev classes with weights that are functions of the distance to some $h$-set: some limit cases”, Russ. J. Math. Phys., 22:1 (2015), 127–140  crossref  mathscinet  zmath  isi  scopus