60 citations to https://www.mathnet.ru/rus/sm916
-
J. S. Dehesa, S. López-Rosa, A. Martínez-Finkelshtein, R. J. Yáñez, Mathematics in Industry, 15, Progress in Industrial Mathematics at ECMI 2008, 2010, 93
-
J. S. Dehesa, S. López-Rosa, A. Martínez-Finkelshtein, R. J. Yáñez, “Information theory of D-dimensional hydrogenic systems: Application to circular and Rydberg states”, Int J Quantum Chem, 2009, NA
-
A. I. Aptekarev, J. S. Dehesa, A. Martínez-Finkelshtein, R. Yáñez, “Discrete Entropies of Orthogonal Polynomials”, Constr Approx, 2008
-
A. Martínez-Finkelshtein, J.F. Sánchez-Lara, “Shannon entropy of symmetric Pollaczek polynomials”, Journal of Approximation Theory, 145:1 (2007), 55
-
J.S. Dehesa, P. Sánchez-Moreno, R.J. Yáñez, “Cramer–Rao information plane of orthogonal hypergeometric polynomials”, Journal of Computational and Applied Mathematics, 186:2 (2006), 523
-
P Sánchez-Moreno, R J Yáñez, V Buyarov, “Asymptotics of the information entropy of the Airy function”, J Phys A Math Gen, 38:46 (2005), 9969
-
М. А. Приходько, “Асимптотика информационной энтропии для двумерного аналога релятивистского атома водорода в модели Козлова–Никишина”, Матем. заметки, 78:5 (2005), 727–744 ; M. A. Prikhod'ko, “Asymptotics of Information Entropy for the Two-Dimensional Analog of the Relativistic Hydrogen Atom in the Kozlov–Nikishin Model”, Math. Notes, 78:5 (2005), 677–692
-
B. Beckermann, A. Martínez-Finkelshtein, E. A. Rakhmanov, F. Wielonsky, “Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class”, J Math Phys (N Y ), 45:11 (2004), 4239
-
Mark W. Coffey, “Asymptotic relation for the quantum entropy of momentum in energy eigenstates”, Physics Letters A, 324:5-6 (2004), 446
-
Jorge S nchez-Ruiz, “Information entropy of Gegenbauer polynomials and Gaussian quadrature”, J Phys A Math Gen, 36:17 (2003), 4857