16 citations to https://www.mathnet.ru/rus/sm7654
  1. Г. П. Пальшин, “Топология слоения Лиувилля в обобщенной задаче трех вихрей со связью”, Матем. сб., 215:5 (2024), 106–145  mathnet  crossref  mathscinet  zmath  adsnasa; G. P. Palshin, “Topology of the Liouville foliation in the generalized constrained three-vortex problem”, Sb. Math., 215:5 (2024), 667–702  crossref  isi
  2. А. Т. Фоменко, В. В. Ведюшкина, “Биллиарды и интегрируемые системы”, УМН, 78:5(473) (2023), 93–176  mathnet  crossref  mathscinet  zmath  adsnasa; A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  crossref  isi
  3. E. A. Kudryavtseva, A. A. Oshemkov, “Structurally Stable Nondegenerate Singularities of Integrable Systems”, Russ. J. Math. Phys., 29:1 (2022), 57  crossref
  4. Anatoly T. Fomenko, Vladislav A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392  crossref
  5. В. В. Ведюшкина, В. А. Кибкало, С. Е. Пустовойтов, “Реализация фокусных особенностей интегрируемых систем биллиардными книжками с потенциалом Гука”, Чебышевский сб., 22:5 (2021), 44–57  mathnet  crossref
  6. Anatoly T. Fomenko, Vladislav A. Kibkalo, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 3  crossref
  7. А. А. Ошемков, М. А. Тужилин, “Интегрируемые возмущения седловых особенностей ранга 0 интегрируемых гамильтоновых систем”, Матем. сб., 209:9 (2018), 102–127  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. A. Oshemkov, M. A. Tuzhilin, “Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems”, Sb. Math., 209:9 (2018), 1351–1375  crossref  isi
  8. В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727  crossref  isi
  9. N. N. Martynchuk, “Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian”, Topology Appl., 191 (2015), 119–130  crossref  mathscinet  zmath  isi  elib  scopus
  10. М. П. Харламов, П. Е. Рябов, “Топологический атлас волчка Ковалевской в двойном поле”, Фундамент. и прикл. матем., 20:2 (2015), 185–230  mathnet  mathscinet  elib; M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci., 223:6 (2017), 775–809  crossref
1
2
Следующая