21 citations to https://www.mathnet.ru/rus/sm7547
  1. Bérangère Delourme, Sonia Fliss, “Guided Modes in a Hexagonal Periodic Graph Like Domain”, Multiscale Model. Simul., 22:3 (2024), 1196  crossref
  2. Delfina Gómez, Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez, “Spectral gaps in a double-periodic perforated Neumann waveguide”, ASY, 131:3-4 (2023), 385  crossref
  3. Nazarov S.A. Chesnel L., “Transmission and Trapping of Waves in An Acoustic Waveguide With Perforated Cross-Walls”, Fluid Dyn., 56:8 (2021), 1070–1093  crossref  mathscinet  isi
  4. Nazarov S., Taskinen J., “Pathology of Essential Spectra of Elliptic Problems in Periodic Family of Beads Threaded By a Spoke Thinning At Infinity”, Rend. Lincei-Mat. Appl., 31:4 (2020), 939–969  crossref  mathscinet  isi
  5. Cardone G., Khrabustovskyi A., “Delta `-Interaction as a Limit of a Thin Neumann Waveguide With Transversal Window”, J. Math. Anal. Appl., 473:2 (2019), 1320–1342  crossref  mathscinet  zmath  isi  scopus
  6. Cardone G. Khrabustovskyi A., “Spectrum of a Singularly Perturbed Periodic Thin Waveguide”, J. Math. Anal. Appl., 454:2 (2017), 673–694  crossref  mathscinet  zmath  isi  scopus
  7. Delourme B., Fliss S., Joly P., Vasilevskaya E., “Trapped Modes in Thin and Infinite Ladder Like Domains. Part 1: Existence Results”, Asymptotic Anal., 103:3 (2017), 103–134  crossref  mathscinet  zmath  isi  scopus
  8. Nazarov S.A., Taskinen J., “Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra”, C. R. Mec., 344:3 (2016), 190–194  crossref  isi  scopus
  9. Borisov D.I., “Creation of spectral bands for a periodic domain with small windows”, Russ. J. Math. Phys., 23:1 (2016), 19–34  crossref  mathscinet  zmath  isi  scopus
  10. S. A. Nazarov, J. Taskinen, “Spectral gaps for periodic piezoelectric waveguides”, Z. Angew. Math. Phys., 66:6 (2015), 3017–3047  crossref  mathscinet  zmath  isi  elib  scopus
1
2
3
Следующая