96 citations to https://www.mathnet.ru/rus/sm696
-
Benharrat M., Alvarez T., Messirdi B., “Generalized Kato Linear Relations”, Filomat, 31:5 (2017), 1129–1139
-
Chafai E., Alvarez T., “Ascent, Essential Ascent, Descent and Essential Descent For a Linear Relation in a Linear Space”, Filomat, 31:3 (2017), 709–721
-
Alvarez T., Chamkha Y., Mnif M., “Quasi-Fredholm Linear Relations in Hilbert Spaces”, Filomat, 31:9 (2017), 2575–2585
-
Aymen Ammar, Aref Jeribi, Bilel Saadaoui, “Frobenius–Schur Factorization for Multivalued ${\varvec{2\times 2}}$ 2 × 2 Matrices Linear Operator”, Mediterr. J. Math., 14:1 (2017)
-
Nadaban S., “Some fundamental properties of fuzzy linear relations between vector spaces”, Filomat, 30:1 (2016), 41–53
-
Baskakov A.G., Krishtal I.A., “Spectral Analysis of Abstract Parabolic Operators in Homogeneous Function Spaces”, Mediterr. J. Math., 13:5 (2016), 2443–2462
-
А. Г. Баскаков, “Гармонический и спектральный анализ операторов с ограниченными степенями и ограниченных полугрупп операторов на банаховом пространстве”, Матем. заметки, 97:2 (2015), 174–190 ; A. G. Baskakov, “Harmonic and Spectral Analysis of Power Bounded Operators and Bounded Semigroups of Operators on Banach Spaces”, Math. Notes, 97:2 (2015), 164–178
-
А. В. Печкуров, “Один пример в теории бисекториальных операторов”, Матем. заметки, 97:2 (2015), 249–254 ; A. V. Pechkurov, “An Example in the Theory of Bisectorial Operators”, Math. Notes, 97:2 (2015), 243–248
-
А. Г. Баскаков, А. Ю. Дуплищева, “Разностные операторы и операторные матрицы второго порядка”, Изв. РАН. Сер. матем., 79:2 (2015), 3–20 ; A. G. Baskakov, A. Yu. Duplishcheva, “Difference operators and operator-valued matrices of the second order”, Izv. Math., 79:2 (2015), 217–232
-
Aymen Ammar, Toka Diagana, Aref Jeribi, “Perturbations of Fredholm linear relations in Banach spaces with application to <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mn>3</mml:mn><mml:mo>×</mml:mo><mml:mn>3</mml:mn></mml:math>-block matrices of linear relations”, Arab Journal of Mathematical Sciences, 2015