20 citations to https://www.mathnet.ru/rus/sm666
-
D. I. Borisov, “Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions”, J Math Sci, 277:6 (2023), 841
-
Д. Б. Давлетов, О. Б. Давлетов, Р. Р. Давлетова, А. А. Ершов, “Сходимость собственных элементов краевой задачи типа Стеклова для оператора Ламэ”, Тр. ИММ УрО РАН, 27, № 1, 2021, 37–47
-
Д. И. Борисов, “Асимптотический анализ краевых задач для оператора Лапласа с частой сменой типа граничных условий”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 14–129
-
Chechkina A.G., D'Apice C., De Maio U., “Operator Estimates For Elliptic Problem With Rapidly Alternating Steklov Boundary Condition”, J. Comput. Appl. Math., 376 (2020), 112802
-
А. Г. Чечкина, “Усреднение спектральных задач с сингулярным возмущением условия Стеклова”, Изв. РАН. Сер. матем., 81:1 (2017), 203–240 ; A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Math., 81:1 (2017), 199–236
-
Т. Ф. Шарапов, “О резольвенте многомерных операторов с частой сменой краевых условий: критический случай”, Уфимск. матем. журн., 8:2 (2016), 66–96 ; T. F. Sharapov, “On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case”, Ufa Math. J., 8:2 (2016), 65–94
-
A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklov–type boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29
-
Т. Ф. Шарапов, “О резольвенте многомерных операторов с частой сменой краевых условий в случае усредненного условия Дирихле”, Матем. сб., 205:10 (2014), 125–160 ; T. F. Sharapov, “On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition”, Sb. Math., 205:10 (2014), 1492–1527
-
H Najar, O Olendski, “Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs”, J. Phys. A: Math. Theor, 44:30 (2011), 305304
-
В. А. Садовничий, А. Г. Чечкина, “Об оценке собственных функций задачи типа Стеклова с малым параметром в случае предельного вырождения спектра”, Уфимск. матем. журн., 3:3 (2011), 127–139