31 citations to https://www.mathnet.ru/rus/sm658
-
Lubinsky D.S., “Distribution of Eigenvalues of Toeplitz Matrices With Smooth Entries”, Linear Alg. Appl., 633 (2022), 332–365
-
Lubinsky D.S., “On Baker'S Patchwork Conjecture For Diagonal Pade Approximants”, Constr. Approx., 53:3 (2021), 545–567
-
Lubinsky D.S., “On Uniform Convergence of Diagonal Multipoint Pade Approximants For Entire Functions”, Constr. Approx., 49:1 (2019), 149–174
-
Doron S. Lubinsky, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 241
-
В. И. Буслаев, “О непрерывных дробях с предельно периодическими коэффициентами”, Матем. сб., 209:2 (2018), 47–65 ; V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205
-
Д. Ш. Любински, “Точные индексы интерполяции, блуждающие полюсы и равномерная сходимость многоточечных аппроксимаций Паде”, Матем. сб., 209:3 (2018), 150–167 ; D. S. Lubinsky, “Exact interpolation, spurious poles, and uniform convergence of multipoint Padé approximants”, Sb. Math., 209:3 (2018), 432–448
-
В. И. Буслаев, “О теореме Ван Флека для предельно периодических непрерывных дробей общего вида”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Труды МИАН, 298, МАИК «Наука/Интерпериодика», М., 2017, 75–100 ; V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93
-
Doron S. Lubinsky, Analytic Number Theory, Approximation Theory, and Special Functions, 2014, 561
-
Buslaev V.I., “An Estimate of the Capacity of Singular Sets of Functions That Are Defined by Continued Fractions”, Anal. Math., 39:1 (2013), 1–27
-
Baratchart L. Yattselev M.L., “Pade Approximants to Certain Elliptic-Type Functions”, J. Anal. Math., 121 (2013), 31–86