13 citations to https://www.mathnet.ru/rus/sm6358
-
Berchio E., Falocchi A., Ferrero A., Ganguly D., “On the First Frequency of Reinforced Partially Hinged Plates”, Commun. Contemp. Math., 23:3 (2021), 1950074
-
V. A. Kozlov, S. A. Nazarov, “Modeling of a False Aneurysm in an Artery: Equilibrium and Development of a Hematoma”, J Math Sci, 239:3 (2019), 309
-
Berchio E., Buoso D., Gazzola F., Zucco D., “A Minimaxmax Problem For Improving the Torsional Stability of Rectangular Plates”, J. Optim. Theory Appl., 177:1 (2018), 64–92
-
Ghosh A., Kozlov V.A., Nazarov S.A., Rule D., “A Two-Dimensional Model of the Thin Laminar Wall of a Curvilinear Flexible Pipe”, Q. J. Mech. Appl. Math., 71:3 (2018), 349–367
-
Berntsson F., Ghosh A., Kozlov V.A., Nazarov S.A., “A One Dimensional Model of Blood Flow Through a Curvilinear Artery”, Appl. Math. Model., 63 (2018), 633–643
-
Antunes P.R.S., Gazzola F., “Some Solutions of Minimaxmax Problems For the Torsional Displacements of Rectangular Plates”, ZAMM-Z. Angew. Math. Mech., 98:11 (2018), 1974–1991
-
F. Berntsson, M. Karlsson, V. Kozlov, S. A. Nazarov, “A one-dimensional model of viscous blood flow in an elastic vessel”, Appl. Math. Comput., 274 (2016), 125–132
-
V. A. Kozlov, S. A. Nazarov, “Asymptotic Models of Anisotropic Heterogeneous Elastic Walls of Blood Vessels”, J Math Sci, 213:4 (2016), 561
-
V. A. Kozlov, S. A. Nazarov, “One-dimensional model of viscoelastic blood flow through a thin elastic vessel”, Journal of Mathematical Sciences, 207:2 (2015), 249–269
-
В. А. Козлов, С. А. Назаров, “Условия сопряжения в одномерной модели разветвляющейся артерии с упругими стенками”, Математические вопросы теории распространения волн. 45, Зап. научн. сем. ПОМИ, 438, ПОМИ, СПб., 2015, 138–177 ; V. A. Kozlov, S. A. Nazarov, “Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall”, J. Math. Sci. (N. Y.), 224:1 (2017), 94–118