19 citations to https://www.mathnet.ru/rus/sm466
-
Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327
-
de Moura E.P., Robinson J.C., “Log-Lipschitz Continuity of the Vector Field on the Attractor of Certain Parabolic Equations”, Dyn. Partial Differ. Equ., 11:3 (2014), 211–228
-
А. Еден, С. В. Зелик, В. К. Калантаров, “Контрпримеры к регулярности проекций Мане в теории аттракторов”, УМН, 68:2(410) (2013), 3–32 ; A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226
-
J.C.. Robinson, “Attractors and Finite-Dimensional Behaviour in the 2D Navier–Stokes Equations”, ISRN Mathematical Analysis, 2013 (2013), 1
-
de Moura E.P., Robinson J.C., Sanchez-Gabites J.J., “Embedding of Global Attractors and their Dynamics”, Proc Amer Math Soc, 139:10 (2011), 3497–3512
-
Langa, JA, “Fractal dimension of a random invariant set”, Journal de Mathematiques Pures et Appliquees, 85:2 (2006), 269
-
А. В. Романов, “Эффективная конечная параметризация в фазовых пространствах
параболических уравнений”, Изв. РАН. Сер. матем., 70:5 (2006), 163–178 ; A. V. Romanov, “Effective finite parametrization in phase spaces of parabolic
equations”, Izv. Math., 70:5 (2006), 1015–1029
-
Rezounenko, A, “A sufficient condition for the existence of approximate inertial manifolds containing the global attractor”, Comptes Rendus Mathematique, 334:11 (2002), 1015
-
А. В. Романов, “Конечномерность динамики на аттракторе для нелинейных параболических уравнений”, Изв. РАН. Сер. матем., 65:5 (2001), 129–152 ; A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001