67 citations to https://www.mathnet.ru/rus/sm451
  1. М. П. Харламов, П. Е. Рябов, “Топологический атлас волчка Ковалевской в двойном поле”, Фундамент. и прикл. матем., 20:2 (2015), 185–230  mathnet  mathscinet  elib; M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci., 223:6 (2017), 775–809  crossref
  2. Rasoul Akbarzadeh, Ghorbanali Haghighatdoost, “The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra $so(4)$”, Regul. Chaotic Dyn., 20:3 (2015), 317–344  mathnet  crossref  mathscinet  zmath  adsnasa
  3. Е. О. Кантонистова, “Лиувиллева классификация интегрируемых гамильтоновых систем на поверхностях вращения”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 5, 41–44  mathnet  mathscinet; E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow University Mathematics Bulletin, 70:5 (2015), 220–222  crossref  isi
  4. M.P. Kharlamov, “Phase topology of one system with separated variables and singularities of the symplectic structure”, Journal of Geometry and Physics, 2014  crossref  mathscinet  scopus  scopus  scopus
  5. Mikhail P. Kharlamov, “Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244  mathnet  crossref  mathscinet  zmath
  6. И. К. Козлов, “Топология слоения Лиувилля для интегрируемого случая Ковалевской на алгебре Ли $\mathrm{so}(4)$”, Матем. сб., 205:4 (2014), 79–120  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572  crossref  isi
  7. С. С. Николаенко, “Топологическая классификация систем Чаплыгина в динамике твердого тела в жидкости”, Матем. сб., 205:2 (2014), 75–122  mathnet  crossref  mathscinet  zmath  adsnasa  elib; S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  crossref  isi
  8. Д. В. Новиков, “Топологические особенности интегрируемого случая Соколова на алгебре Ли $\mathrm{so}(3,1)$”, Матем. сб., 205:8 (2014), 41–66  mathnet  crossref  mathscinet  zmath  adsnasa  elib; D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Sb. Math., 205:8 (2014), 1107–1132  crossref  isi
  9. Н. С. Славина, “Топологическая классификация систем типа Ковалевской–Яхьи”, Матем. сб., 205:1 (2014), 105–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; N. S. Slavina, “Topological classification of systems of Kovalevskaya-Yehia type”, Sb. Math., 205:1 (2014), 101–155  crossref  isi
  10. Slavina N.S., “Classification of the Family of Kovalevskaya-Yehia Systems Up to Liouville Equivalence”, Dokl. Math., 88:2 (2013), 537–540  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
Предыдущая
1
2
3
4
5
6
7
Следующая