30 citations to https://www.mathnet.ru/rus/sm3939
-
Sergei A. Nazarov, Keijo M. Ruotsalainen, “Curved channels with constant cross sections may support trapped surface waves”, Z. Angew. Math. Phys., 74:4 (2023)
-
Filipe S. Cal, Gonçalo A.S. Dias, Bruno M.A.M. Pereira, “Trapped modes in a fluid with three layers topped by a rigid lid”, Math Methods in App Sciences, 45:16 (2022), 9928
-
С. А. Назаров, “Моделирование сингулярно возмущенной спектральной задачи при помощи самосопряженных расширений операторов предельных задач”, Функц. анализ и его прил., 49:1 (2015), 31–48 ; S. A. Nazarov, “Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit
Problems”, Funct. Anal. Appl., 49:1 (2015), 25–39
-
Durante T., “Accumulation Effect For Water-Waves Mode Trapped in a Canal”, Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2014 (Icnaam-2014), AIP Conference Proceedings, 1648, eds. Simos T., Tsitouras C., Amer Inst Physics, 2015, UNSP 390007
-
С. А. Назаров, “Асимптотические разложения собственных чисел задачи Стеклова в сингулярно возмущенных областях”, Алгебра и анализ, 26:2 (2014), 119–184 ; S. A. Nazarov, “Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains”, St. Petersburg Math. J., 26:2 (2015), 273–318
-
Piat V.Ch., Nazarov S.A., Ruotsalainen K., “Spectral gaps for water waves above a corrugated bottom”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 469:2149 (2013), 20120545
-
Nazarov S.A., Taskinen J., Videman J.H., “Asymptotic Behavior of Trapped Modes in Two-Layer Fluids”, Wave Motion, 50:2 (2013), 111–126
-
Nazarov S.A., Taskinen J., “Localization Estimates for Eigenfrequencies of Waves Trapped by a Freely Floating Body in a Channel”, SIAM J. Math. Anal., 45:4 (2013), 2523–2545
-
Kamotski I., Mazya V., “Estimate for a Solution to the Water Wave Problem in the Presence of a Submerged Body”, Russ. J. Math. Phys., 20:4 (2013), 453–467
-
Nazarov S.A., Taskinen J., “Properties of the Spectrum in the John Problem on a Freely Floating Submerged Body in a Finite Basin”, Differ. Equ., 49:12 (2013), 1544–1559