44 citations to https://www.mathnet.ru/rus/sm3878
  1. С. П. Суетин, “О динамике “блуждающих” нулей полиномов, ортогональных на нескольких отрезках”, УМН, 57:2(344) (2002), 199–200  mathnet  crossref  mathscinet  zmath  adsnasa; S. P. Suetin, “On the dynamics of “wandering” zeros of polynomials that are orthogonal on certain intervals”, Russian Math. Surveys, 57:2 (2002), 425–427  crossref  isi  elib
  2. В. И. Буслаев, “О гипотезе Бейкера–Гаммеля–Уиллса в теории аппроксимаций Паде”, Матем. сб., 193:6 (2002), 25–38  mathnet  crossref  mathscinet  zmath; V. I. Buslaev, “On the Baker–Gammel–Wills conjecture in the theory of Padé approximants”, Sb. Math., 193:6 (2002), 811–823  crossref  isi  elib
  3. С. П. Суетин, “Об асимптотических свойствах полюсов диагональных аппроксимаций Паде для некоторых обобщений марковских функций”, Матем. сб., 193:12 (2002), 105–133  mathnet  crossref  mathscinet  zmath; S. P. Suetin, “Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions”, Sb. Math., 193:12 (2002), 1837–1866  crossref  isi  elib
  4. Ysern B. Lagomasino G., “Convergence of Multipoint Pade-Type Approximants”, J. Approx. Theory, 109:2 (2001), 257–278  crossref  mathscinet  zmath  isi
  5. С. П. Суетин, “О равномерной сходимости диагональных аппроксимаций Паде для гиперэллиптических функций”, Матем. сб., 191:9 (2000), 81–114  mathnet  crossref  mathscinet  zmath; S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373  crossref  isi
  6. Amiran Ambroladze, Hans Wallin, “Padé-Type Approximants of Markov and Meromorphic Functions”, Journal of Approximation Theory, 88:3 (1997), 354  crossref  mathscinet  zmath
  7. Claude Brezinski, Jeannette Van Iseghem, Handbook of Numerical Analysis, 3, Handbook of Numerical Analysis Volume 3, 1994, 47  crossref
  8. Д. Барриос, Г. Л. Лопес, Е. Торрано, “Распределение нулей и асимптотика полиномов, удовлетворяющих трехчленным рекуррентным соотношениям с комплексными коэффициентами”, Матем. сб., 184:11 (1993), 63–92  mathnet  mathscinet  zmath; D. Barrios, G. L. Lopes, E. Torrano, “Zeros and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients”, Russian Acad. Sci. Sb. Math., 80:2 (1995), 309–333  crossref  isi
  9. Paul Nevai, “Géza Freud, orthogonal polynomials and Christoffel functions. A case study”, Journal of Approximation Theory, 48:1 (1986), 3  crossref  mathscinet  zmath
  10. А. И. Аптекарев, “Асимптотические свойства многочленов, ортогональных на системе контуров, и периодические движения цепочек Тода”, Матем. сб., 125(167):2(10) (1984), 231–258  mathnet  mathscinet  zmath; A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260  crossref
Предыдущая
1
2
3
4
5
Следующая