113 citations to https://www.mathnet.ru/rus/sm3099
-
M. Aassila, “Global existence of solutions to degenerate wave equations with dissipative terms”, Bull. Austral. Math. Soc., 60:1 (1999), 1–10
-
M Milla Miranda, L.P San Gil Jutuca, “Existence and boundary stabilization of solutions for the kirchhoff equation”, Communications in Partial Differential Equations, 24:9-10 (1999), 1759
-
Mohammed Aassila, “Global existence and energy decay for a damped quasi-linear wave equation”, Math Meth Appl Sci, 21:13 (1998), 1185
-
Gourin Daniel, Mechab Mustapha, “Probleme de cauchy pour des equations de kirchhoff generalisees”, Communications in Partial Differential Equations, 23:5-6 (1998), 761
-
Tetsu Mizumachi, “Time decay of solutions to degenerate Kirchhoff type equation”, Nonlinear Analysis: Theory, Methods & Applications, 33:3 (1998), 235
-
Mohammed Aassila, “Global existence and energy decay for a damped quasi-linear wave equation”, Math. Meth. Appl. Sci., 21:13 (1998), 1185
-
K. Ono, “On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation”, Math. Methods Appl. Sci., 20:2 (1997), 151–177
-
Kouémou-Patcheu Solange, Solange Kouémou-Patcheu, “Global exixtence and exponential decay estimates for a dampad quasilinear equation”, Communications in Partial Differential Equations, 22:11-12 (1997), 2007
-
Kosuke Ono, “Global Existence, Decay, and Blowup of Solutions for Some Mildly Degenerate Nonlinear Kirchhoff Strings”, Journal of Differential Equations, 137:2 (1997), 273
-
W.E. Fitzgibbon, M.E. Parrott, “Convergence of singular perturbations of strongly damped nonlinear wave equations”, Nonlinear Analysis: Theory, Methods & Applications, 28:1 (1997), 165