113 citations to https://www.mathnet.ru/rus/sm3099
-
Honglv Ma, Jin Zhang, Chengkui Zhong, “Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension”, Journal of Mathematical Analysis and Applications, 484:1 (2020), 123670
-
Pietro Baldi, Emanuele Haus, “On the existence time for the Kirchhoff equation with periodic boundary conditions”, Nonlinearity, 33:1 (2020), 196
-
Fágner D. Araruna, Anderson L. A. Araujo, Aldo T. Lourêdo, “Decay of solution for degenerate Kirchhoff equation with general nonlinearity”, Math Methods in App Sciences, 43:5 (2020), 2695
-
Daisuke Naimen, Masataka Shibata, “Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension”, Nonlinear Analysis, 186 (2019), 187
-
Tokio Matsuyama, Michael Ruzhansky, “On the Gevrey well-posedness of the Kirchhoff equation”, JAMA, 137:1 (2019), 449
-
Fágner Dias Araruna, Frederico de Oliveira Matias, Milton de Lacerda Oliveira, Shirley Maria Santos e Souza, SEMA SIMAI Springer Series, 17, Recent Advances in PDEs: Analysis, Numerics and Control, 2018, 17
-
Haroldo Rodrigues Clark, Ronald Ramos Guardia, “Uniform stabilization of Kirchhoff problems without damping”, Math Methods in App Sciences, 41:17 (2018), 7667
-
Tokio Matsuyama, Michael Ruzhansky, “Almost global well-posedness of Kirchhoff equation with Gevrey data”, Comptes Rendus. Mathématique, 355:5 (2017), 522
-
Riccardo Montalto, “Quasi-periodic solutions of forced Kirchhoff equation”, Nonlinear Differ. Equ. Appl., 24:1 (2017)
-
Tokio Matsuyama, Michael Ruzhansky, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 313