113 citations to https://www.mathnet.ru/rus/sm3099
  1. Honglv Ma, Jin Zhang, Chengkui Zhong, “Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension”, Journal of Mathematical Analysis and Applications, 484:1 (2020), 123670  crossref
  2. Pietro Baldi, Emanuele Haus, “On the existence time for the Kirchhoff equation with periodic boundary conditions”, Nonlinearity, 33:1 (2020), 196  crossref
  3. Fágner D. Araruna, Anderson L. A. Araujo, Aldo T. Lourêdo, “Decay of solution for degenerate Kirchhoff equation with general nonlinearity”, Math Methods in App Sciences, 43:5 (2020), 2695  crossref
  4. Daisuke Naimen, Masataka Shibata, “Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension”, Nonlinear Analysis, 186 (2019), 187  crossref
  5. Tokio Matsuyama, Michael Ruzhansky, “On the Gevrey well-posedness of the Kirchhoff equation”, JAMA, 137:1 (2019), 449  crossref
  6. Fágner Dias Araruna, Frederico de Oliveira Matias, Milton de Lacerda Oliveira, Shirley Maria Santos e Souza, SEMA SIMAI Springer Series, 17, Recent Advances in PDEs: Analysis, Numerics and Control, 2018, 17  crossref
  7. Haroldo Rodrigues Clark, Ronald Ramos Guardia, “Uniform stabilization of Kirchhoff problems without damping”, Math Methods in App Sciences, 41:17 (2018), 7667  crossref
  8. Tokio Matsuyama, Michael Ruzhansky, “Almost global well-posedness of Kirchhoff equation with Gevrey data”, Comptes Rendus. Mathématique, 355:5 (2017), 522  crossref
  9. Riccardo Montalto, “Quasi-periodic solutions of forced Kirchhoff equation”, Nonlinear Differ. Equ. Appl., 24:1 (2017)  crossref
  10. Tokio Matsuyama, Michael Ruzhansky, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 313  crossref
Предыдущая
1
2
3
4
5
6
12
Следующая