71 citations to https://www.mathnet.ru/rus/sm293
-
Bartholdi L., Virág B., “Amenability via random walks”, Duke Math. J., 130:1 (2005), 39–56
-
Brin M.G., “Elementary amenable subgroups of R. Thompson's group $F$”, Internat. J. Algebra Comput., 15:4 (2005), 619–642
-
Ivanov S.V., “Embedding free Burnside groups in finitely presented groups”, Geom. Dedicata, 111:1 (2005), 87–105
-
Rostislav Grigorchuk, Progress in Mathematics, 248, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, 2005, 117
-
Navas A.S., “Quelques groupes moyennables de difféomorphismes de l'intervalle [Some amenable groups of diffeomorphisms of the interval]”, Bol. Soc. Mat. Mexicana (3), 10:2 (2004), 219–244
-
Guba V.S., “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702
-
Navas A., “Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite [Solvable groups of diffeomorphisms of the interval, the circle and the real line]”, Bull. Braz. Math. Soc. (N.S.), 35:1 (2004), 13–50
-
Bartholdi L., “Endomorphic presentations of branch groups”, J. Algebra, 268:2 (2003), 419–443
-
Ol'Shanskii A.Yu., Sapir M.V., “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 2003, no. 96, 43–169
-
Bartholdi L., Grigorchuk R., Nekrashevych V., “From fractal groups to fractal sets”, Fractals in Graz 2001: Analysis - Dynamics - Geometry - Stochastics, Trends in Mathematics, 2003, 25–118