71 citations to https://www.mathnet.ru/rus/sm293
  1. Bartholdi L., Virág B., “Amenability via random walks”, Duke Math. J., 130:1 (2005), 39–56  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  2. Brin M.G., “Elementary amenable subgroups of R. Thompson's group $F$”, Internat. J. Algebra Comput., 15:4 (2005), 619–642  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
  3. Ivanov S.V., “Embedding free Burnside groups in finitely presented groups”, Geom. Dedicata, 111:1 (2005), 87–105  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  4. Rostislav Grigorchuk, Progress in Mathematics, 248, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, 2005, 117  crossref
  5. Navas A.S., “Quelques groupes moyennables de difféomorphismes de l'intervalle [Some amenable groups of diffeomorphisms of the interval]”, Bol. Soc. Mat. Mexicana (3), 10:2 (2004), 219–244  mathscinet  isi
  6. Guba V.S., “On the properties of the Cayley graph of Richard Thompson's group $F$”, Internat. J. Algebra Comput., 14:5-6 (2004), 677–702  crossref  mathscinet  zmath  isi  elib
  7. Navas A., “Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite [Solvable groups of diffeomorphisms of the interval, the circle and the real line]”, Bull. Braz. Math. Soc. (N.S.), 35:1 (2004), 13–50  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  8. Bartholdi L., “Endomorphic presentations of branch groups”, J. Algebra, 268:2 (2003), 419–443  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
  9. Ol'Shanskii A.Yu., Sapir M.V., “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 2003, no. 96, 43–169  crossref  mathscinet  isi
  10. Bartholdi L., Grigorchuk R., Nekrashevych V., “From fractal groups to fractal sets”, Fractals in Graz 2001: Analysis - Dynamics - Geometry - Stochastics, Trends in Mathematics, 2003, 25–118  mathscinet  zmath  isi
Предыдущая
1
2
3
4
5
6
7
8
Следующая