25 citations to https://www.mathnet.ru/rus/sm2764
-
Hansjörg Geiges, Jakob Hedicke, Murat Sağlam, “Bott‐integrable Reeb flows on 3‐manifolds”, Journal of London Math Soc, 109:1 (2024)
-
Anatoly T. Fomenko, Vladislav A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392
-
Robert Cardona, “The topology of Bott integrable fluids”, DCDS, 42:9 (2022), 4321
-
Fomenko A.T. Vedyushkina V.V., “Topological Billiards, Conservation Laws and Classification of Trajectories”, Functional Analysis and Geometry: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 733, ed. Kuchment P. Semenov E., Amer Mathematical Soc, 2019, 129–148
-
Anatoly T. Fomenko, Kirill I. Solodskih, Understanding Complex Systems, Modern Mathematics and Mechanics, 2019, 13
-
А. А. Ошемков, М. А. Тужилин, “Интегрируемые возмущения седловых особенностей ранга 0 интегрируемых гамильтоновых систем”, Матем. сб., 209:9 (2018), 102–127 ; A. A. Oshemkov, M. A. Tuzhilin, “Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems”, Sb. Math., 209:9 (2018), 1351–1375
-
М. А. Тужилин, “Особенности интегрируемых гамильтоновых систем с одинаковым слоением на границе. Бесконечная серия”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2016, № 5, 14–20 ; M. A. Tuzhilin, “Singularities of integrable Hamiltonian systems with the same boundary foliation. An infinite series”, Moscow University Mathematics Bulletin, 71:5 (2016), 185–190
-
Fokicheva V.V., Fomenko A.T., “Billiard Systems as the Models For the Rigid Body Dynamics”, Advances in Dynamical Systems and Control, Studies in Systems Decision and Control, 69, eds. Sadovnichiy V., Zgurovsky M., Springer Int Publishing Ag, 2016, 13–33
-
Е. О. Кантонистова, “Лиувиллева классификация интегрируемых гамильтоновых систем на поверхностях вращения”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 5, 41–44 ; E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow University Mathematics Bulletin, 70:5 (2015), 220–222
-
А. Ю. Коняев, “Классификация алгебр Ли с орбитами коприсоединенного представления общего положения размерности 2”, Матем. сб., 205:1 (2014), 47–66 ; A. Yu. Konyaev, “Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation”, Sb. Math., 205:1 (2014), 45–62