26 citations to https://www.mathnet.ru/rus/sm2639
  1. P.L.. Polyakov, “Sharp estimates for operator
    $$\bar \partial _M $$
    on aq-concave CR manifoldon aq-concave CR manifold”, J Geom Anal, 6:2 (1996), 233  crossref  mathscinet  zmath
  2. Chen ZH. Ma D., “Sharp l(P) Estimates for the Partial-Derivative(B)-Equation on the Boundaries of Real Ellipsoids in C-N”, Commun. Partial Differ. Equ., 19:1-2 (1994), 61–87  crossref  mathscinet  zmath  isi
  3. Gábor Francsics, “Hypoellipticity in the tangential Cauchy-Riemann complex”, Duke Math. J., 73:1 (1994)  crossref
  4. D. -C. Chang, A. Nagel, E. M. Stein, “Estimates for the
    $$\bar \partial $$
    -Neumann problem in pseudoconvex domains of finite type in C2problem in pseudoconvex domains of finite type in C2”, Acta Math, 169:1 (1992), 153  crossref  mathscinet  zmath  isi
  5. П. В. Дегтярь, “Интегрирование гамильтоновых систем методом $\overline\partial$-задачи”, УМН, 47:3(285) (1992), 159–160  mathnet  mathscinet  zmath  adsnasa; P. V. Degtar', “Integration of Hamiltonian systems by the method of the $\overline\partial$ -problem”, Russian Math. Surveys, 47:3 (1992), 170–171  crossref  isi
  6. Mei-Chi Shaw, “The range of the tangential Cauchy-Riemann operator over a small ball”, Journal of Differential Equations, 86:1 (1990), 183  crossref  mathscinet
  7. Shaw M., “Prescribing Zeros of Functions in the Nevanlinna Class on Weakly Pseudo-Convex Domains in C-2”, Trans. Am. Math. Soc., 313:1 (1989), 407–418  crossref  mathscinet  zmath  isi
  8. Mei-Chi Shaw, “Prescribing zeros of functions in the Nevanlinna class on weakly pseudo-convex domains in 𝐶²”, Trans. Amer. Math. Soc., 313:1 (1989), 407  crossref
  9. Shaw M., “Holder and Lp Estimates for Partial-Differential-Equation-B on Weakly Pseudo-Convex Boundaries in C2”, Math. Ann., 279:4 (1988), 635–652  crossref  mathscinet  zmath  isi
  10. Charpentier P., “The Zeros in Functions of the Nevanlinna-Type in the Bidisc”, 1094, 1984, 32–43  mathscinet  zmath  isi
Предыдущая
1
2
3
Следующая