19 citations to https://www.mathnet.ru/rus/sm2632
-
Б. Н. Хабибуллин, А. П. Розит, “К распределению нулевых множеств голоморфных функций”, Функц. анализ и его прил., 52:1 (2018), 26–42 ; B. N. Khabibullin, A. P. Rozit, “On the Distribution of Zero Sets of Holomorphic Functions”, Funct. Anal. Appl., 52:1 (2018), 21–34
-
Б. Н. Хабибуллин, З. Ф. Абдуллина, А. П. Розит, “Теорема единственности и субгармонические тестовые функции”, Алгебра и анализ, 30:2 (2018), 318–334 ; B. N. Khabibullin, Z. F. Abdullina, A. P. Rozit, “A uniqueness theorem and subharmonic test functions”, St. Petersburg Math. J., 30:2 (2019), 379–390
-
Ahn H., “Weighted l-P Estimates for the Partial Derivative-Equation on Convex Domains of Finite Type”, Publ. Mat., 48:1 (2004), 139–157
-
Andersson M., “Integral Representation with Weights I”, Math. Ann., 326:1 (2003), 1–18
-
“LpESTIMATES WITH WEIGHTS FOR THE (equation omitted)-EQUATION ON REAL ELLIPSOIDS IN Cn”, Communications of the Korean Mathematical Society, 18:2 (2003), 263
-
Heungju AHN, Hong Rae CHO, “OPTIMAL NON-ISOTROPIC Lp ESTIMATES WITH WEIGHTS FOR ∂ IN STRICTLY PSEUDOCONVEX DOMAINS”, Kyushu J. Math., 56:2 (2002), 447
-
Heungju AHN, Hong Rae CHO, “Zero sets of holomorphic functions in the Nevanlinna type class on convex domains in C<sup>2</sup>”, Jpn. j. math, 28:2 (2002), 245
-
S. Asserda, “The essential norm of Hankel operator on the Bergman spaces of strongly pseudoconvex domains”, Integr equ oper theory, 36:4 (2000), 379
-
B HENNE, “Classes de Nevanlinna dans certains domaines strictement pseudoconvexes non lisses”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 326:4 (1998), 437
-
G. M. Khenkin, Encyclopaedia of Mathematical Sciences, 7, Introduction to Complex Analysis, 1997, 19