92 citations to https://www.mathnet.ru/rus/sm2138
  1. J LEVANDOSKY, M SEPULVEDA, O VERAVILLAGRAN, “Gain of regularity for the KP-I equation☆”, Journal of Differential Equations, 245:3 (2008), 762  crossref  mathscinet  zmath
  2. Liana L. Dawson, “Uniqueness properties of higher order dispersive equations”, Journal of Differential Equations, 236:1 (2007), 199  crossref  mathscinet  zmath
  3. L. Escauriaza, C.E. Kenig, G. Ponce, L. Vega, “On uniqueness properties of solutions of the k-generalized KdV equations”, Journal of Functional Analysis, 244:2 (2007), 504  crossref  mathscinet  zmath
  4. Chengchun Hao, Ling Hsiao, Baoxiang Wang, “Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces”, Journal of Mathematical Analysis and Applications, 328:1 (2007), 58  crossref  mathscinet  zmath
  5. Ademir Fernando Pazoto, “Unique continuation and decay for the Korteweg-de Vries equation with localized damping”, ESAIM: COCV, 11:3 (2005), 473  crossref  mathscinet  zmath
  6. Kappeler T., Perry P., Shubin M., Topalov P., “The Miura Map on the Line”, Int. Math. Res. Notices, 2005, no. 50, 3091–3133  crossref  mathscinet  zmath  isi  elib
  7. Faminskii, AV, “Initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional-order Sobolev spaces”, Communications in Partial Differential Equations, 29:11–12 (2004), 1653  crossref  mathscinet  zmath  isi  elib
  8. C.E.. Kenig, Gustavo Ponce, Luis Vega, “The Cauchy problem for quasi-linear Schr�dinger equations”, Invent. math, 158:2 (2004), 343  crossref  mathscinet  zmath
  9. Zhidkov, P, “Korteweg-de Vries and nonlinear Schroginger equations: Qualitative theory”, Korteweg-de Vries and Nonlinear Schroginger Equations: Qualitative Theory, 1756 (2001), 1  crossref  mathscinet  isi
  10. Hayashi N., Naumkin P., “On the Modified Korteweg-de Vries Equation”, Math. Phys. Anal. Geom., 4:3 (2001), 197–227  crossref  mathscinet  zmath  isi
Предыдущая
1
2
3
4
5
6
7
8
9
10
Следующая