8 citations to https://www.mathnet.ru/rus/sm1877
-
Vera Tonić, “Bockstein basis and resolution theorems in extension theory”, Topology and its Applications, 157:3 (2010), 674
-
Rubin L. Schapiro P., “Resolutions for Metrizable Compacta in Extension Theory”, Trans. Am. Math. Soc., 358:6 (2006), 2507–2536
-
Levin M., “Acyclic Resolutions for Arbitrary Groups”, Isr. J. Math., 135 (2003), 193–203
-
Akira Koyama, Katsuya Yokoi, “Cohomological dimension and acyclic resolutions”, Topology and its Applications, 120:1-2 (2002), 175
-
Takahisa Miyata, “Shape aspherical compacta–applications of a theorem of Kan and Thurston to cohomological dimension and shape theories”, Proc. Amer. Math. Soc., 129:9 (2001), 2783
-
Dydak J. Walsh J., “Complexes That Arise in Cohomological Dimension Theory - a Unified Approach”, J. Lond. Math. Soc.-Second Ser., 48:2 (1993), 329–347
-
А. Н. Дранишников, “Гомологическая теория размерности”, УМН, 43:4(262) (1988), 11–55 ; A. N. Dranishnikov, “Homological dimension theory”, Russian Math. Surveys, 43:4 (1988), 11–63
-
А. Н. Дранишников, Е. В. Щепин, “Клеточноподобные отображения.
Проблема повышения размерности”, УМН, 41:6(252) (1986), 49–90 ; A. N. Dranishnikov, E. V. Shchepin, “Cell-like maps. The problem of raising dimension”, Russian Math. Surveys, 41:6 (1986), 59–111