24 citations to https://www.mathnet.ru/rus/sjvm668
  1. R. Argun, A. Gorbachev, N. Levashova, D. Lukyanenko, “Inverse problem for an equation of the reaction-diffusion-advection type with data on the position of a reaction front: features of the solution in the case of a nonlinear integral equation in a reduced statement”, Mathematics, 9:18 (2021), 2342  crossref  isi  scopus
  2. D. V. Klyuchinskiy, N. S. Novikov, M. A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Phys., 439 (2021), 110374  crossref  mathscinet  isi  scopus
  3. N. Levashova, A. Gorbachev, R. Argun, D. Lukyanenko, “The problem of the non-uniqueness of the solution to the inverse problem of recovering the symmetric states of a bistable medium with data on the position of an autowave front”, Symmetry-Basel, 13:5 (2021), 860  crossref  isi  scopus
  4. D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824  crossref  mathscinet  isi  scopus
  5. D. Lukyanenko, T. Yeleskina, I. Prigorniy, T. Isaev, A. Borzunov, M. Shishlenin, “Inverse problem of recovering the initial condition for a nonlinear equation of the reaction-diffusion-advection type by data given on the position of a reaction front with a time delay”, Mathematics, 9:4 (2021), 342  crossref  isi  scopus
  6. T. K. Yuldashev, F. D. Rakhmonov, “On a Benney–Luke Type Differential Equation with Nonlinear Boundary Value Conditions”, Lobachevskii J Math, 42:15 (2021), 3761  crossref
  7. D. V. Lukyanenko, I. V. Prigorniy, M. A. Shishlenin, “Some features of solving an inverse backward problem for a generalized Burgers' equation”, J. Inverse Ill-Posed Probl., 28:5 (2020), 641–649  crossref  mathscinet  zmath  isi  scopus
  8. D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758  crossref  mathscinet  zmath  isi  scopus
  9. E. Tabarintseva, “Approximate solving of an inverse problem for a parabolic equation with nonlocal data”, 2019 15Th International Asian School-Seminar Optimization Problems of Complex Systems (OPCS 2019), IEEE, 2019, 173–178  isi
  10. В. М. Исаков, С. И. Кабанихин, А. А. Шананин, М. А. Шишленин, С. Жанг, “Алгоритм определения функции волатильности в модели Блэка-Шоулза”, Ж. вычисл. матем. и матем. физ., 59:10 (2019), 1815–1820  mathnet  crossref  elib; V. M. Isakov, S. I. Kabanikhin, A. A. Shananin, M. A. Shishlenin, S. Zhang, “Algorithm for determining the volatility function in the Black–Scholes model”, Comput. Math. Math. Phys., 59:10 (2019), 1753–1758  crossref  isi
Предыдущая
1
2
3
Следующая