10 citations to https://www.mathnet.ru/rus/sigma7
-
Shapovalov A.V. Kulagin A.E. Trifonov A.Yu., “The Gross-Pitaevskii Equation With a Nonlocal Interaction in a Semiclassical Approximation on a Curve”, Symmetry-Basel, 12:2 (2020), 201
-
Zemlyanov A.A., Bulygin A.D., “Analysis of Some Properties of the Nonlinear Schrodinger Equation Used For Filamentation Modeling”, Russ. Phys. J., 61:2 (2018), 357–363
-
Aleksandr L. Lisok, Aleksandr V. Shapovalov, Andrey Yu. Trifonov, “Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation”, SIGMA, 9 (2013), 066, 21 pp.
-
Belov V.V., Smirnova E.I., Trifonov A.Yu., “Semiclassical Spectral Series for the Two-Component Hartree-Type Equation”, Russian Physics Journal, 54:6 (2011), 639–648
-
Smirnova E.I., Trifonov A.Yu., Shapovalov A.V., “FORMALISM OF SEMICLASSICAL ASYMPTOTICS FOR A TWO-COMPONENT HARTREE-TYPE EQUATION”, Russian Physics Journal, 52:10 (2009), 1068–1076
-
В. В. Белов, Ф. Н. Литвинец, А. Ю. Трифонов, “Квазиклассические спектральные серии оператора типа Хартри, отвечающие точке покоя классической системы Гамильтона–Эренфеста”, ТМФ, 150:1 (2007), 26–40 ; V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding
to a rest point of the classical Hamilton–Ehrenfest system”, Theoret. and Math. Phys., 150:1 (2007), 21–33
-
Alexander V. Shapovalov, Roman O. Rezaev, Andrey Yu. Trifonov, “Symmetry Operators for the Fokker–Plank–Kolmogorov Equation with Nonlocal Quadratic Nonlinearity”, SIGMA, 3 (2007), 005, 16 pp.
-
Litvinets, FN, “Berry phases for 3D Hartree-type equations with a quadratic potential and a uniform magnetic field”, Journal of Physics A-Mathematical and Theoretical, 40:36 (2007), 11129
-
Khirnos I. V., Litvinets F. N., Trifonov A. Yu., Shipulya M. A., “Semiclassical spectral series of the two-component Hartree-type operator”, Russian Physics Journal, 50:5 (2007), 497–502
-
Belov V.V., Kondratieva M.F., Trifonov A.Yu., “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton-Ehrenfest system”, Journal of Physics A-Mathematical and General, 39:34 (2006), 10821–10847