15 citations to https://www.mathnet.ru/rus/sigma550
-
S. Ya. Startsev, “On Darboux non-integrability of Hietarinta equation”, Уфимск. матем. журн., 13:2 (2021), 166–175 ; Ufa Math. J., 13:2 (2021), 160–169
-
Р. Н. Гарифуллин, Р. И. Ямилов, “Модифицированные серии интегрируемых дискретных уравнений на квадратной решетке с нестандартной симметрийной структурой”, ТМФ, 205:1 (2020), 23–40 ; R. N. Garifullin, R. I. Yamilov, “Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure”, Theoret. and Math. Phys., 205:1 (2020), 1264–1278
-
Grammaticos B., Ramani A., “Gambier Lattices and Other Linearisable Systems”, J. Nonlinear Math. Phys., 27:4 (2020), 688–696
-
Garifullin R.N. Gubbiotti G. Yamilov I R., “Integrable Discrete Autonomous Quad-Equations Admitting, as Generalized Symmetries, Known Five-Point Differential-Difference Equations”, J. Nonlinear Math. Phys., 26:3 (2019), 333–357
-
Rustem N. Garifullin, Ravil I. Yamilov, “Integrable Modifications of the Ito–Narita–Bogoyavlensky Equation”, SIGMA, 15 (2019), 062, 15 pp.
-
R. N. Garifullin, R. I. Yamilov, “On series of Darboux integrable discrete equations on square lattice”, Уфимск. матем. журн., 11:3 (2019), 100–109 ; Ufa Math. J., 11:3 (2019), 99–108
-
Gubbiotti, G.; Levi, D.l Scimiterna, C., “On partial differential and difference equations with symmetries depending on arbitrary functions”, Acta Polytechnica, 56:3 (2016), 193-201
-
Garifullin R.N. Yamilov R.I., “Integrable Discrete Nonautonomous Quad-Equations as Backlund Auto-Transformations For Known Volterra and Toda Type Semidiscrete Equations”, Seventh International Workshop: Group Analysis of Differential Equations and Integrable Systems (Gadeisvii), Journal of Physics Conference Series, 621, IOP Publishing Ltd, 2015, UNSP 012005
-
Sergey Ya. Startsev, “Non-Point Invertible Transformations and Integrability of Partial Difference Equations”, SIGMA, 10 (2014), 066, 13 pp.
-
Startsev S.Ya., “Darboux Integrable Discrete Equations Possessing an Autonomous First-Order Integral”, J. Phys. A-Math. Theor., 47:10 (2014), 105204